Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018359669> ?p ?o ?g. }
- W2018359669 endingPage "209" @default.
- W2018359669 startingPage "194" @default.
- W2018359669 abstract "This paper introduces an evolving neural fuzzy modeling approach constructed upon the neo-fuzzy neuron and network. The approach uses an incremental learning scheme to simultaneously granulate the input space and update the neural network weights. The neural network structure and parameters evolve simultaneously as data are input. Initially the space of each input variable is granulated using two complementary triangular membership functions. New triangular membership functions may be added, excluded and/or have their parameters adjusted depending on the input data and modeling error. The parameters of the network are updated using a gradient-based scheme with optimal learning rate. The performance of the approach is evaluated using instances of times series forecasting and nonlinear system identification problems. Computational experiments and comparisons against alternative evolving models show that the evolving neural neo-fuzzy network is accurate and fast, characteristics which are essential for adaptive systems modeling, especially in real-time, on-line environments." @default.
- W2018359669 created "2016-06-24" @default.
- W2018359669 creator A5009222136 @default.
- W2018359669 creator A5014780974 @default.
- W2018359669 creator A5084981285 @default.
- W2018359669 creator A5087915677 @default.
- W2018359669 date "2014-01-01" @default.
- W2018359669 modified "2023-10-03" @default.
- W2018359669 title "A fast learning algorithm for evolving neo-fuzzy neuron" @default.
- W2018359669 cites W1884425931 @default.
- W2018359669 cites W1966654857 @default.
- W2018359669 cites W1972471335 @default.
- W2018359669 cites W1992176519 @default.
- W2018359669 cites W1993740947 @default.
- W2018359669 cites W2013357884 @default.
- W2018359669 cites W2013845289 @default.
- W2018359669 cites W2016319797 @default.
- W2018359669 cites W2019207321 @default.
- W2018359669 cites W2029952384 @default.
- W2018359669 cites W2030950474 @default.
- W2018359669 cites W2052873800 @default.
- W2018359669 cites W2059121040 @default.
- W2018359669 cites W2066159588 @default.
- W2018359669 cites W2077874114 @default.
- W2018359669 cites W2079325629 @default.
- W2018359669 cites W2092911486 @default.
- W2018359669 cites W2094631910 @default.
- W2018359669 cites W2094664509 @default.
- W2018359669 cites W2112618766 @default.
- W2018359669 cites W2114651920 @default.
- W2018359669 cites W2129013743 @default.
- W2018359669 cites W2137602723 @default.
- W2018359669 cites W2137992452 @default.
- W2018359669 cites W2144276202 @default.
- W2018359669 cites W2151863350 @default.
- W2018359669 cites W2152161790 @default.
- W2018359669 cites W2153196467 @default.
- W2018359669 cites W2162635690 @default.
- W2018359669 cites W2164679752 @default.
- W2018359669 cites W2171253128 @default.
- W2018359669 doi "https://doi.org/10.1016/j.asoc.2013.03.022" @default.
- W2018359669 hasPublicationYear "2014" @default.
- W2018359669 type Work @default.
- W2018359669 sameAs 2018359669 @default.
- W2018359669 citedByCount "74" @default.
- W2018359669 countsByYear W20183596692014 @default.
- W2018359669 countsByYear W20183596692015 @default.
- W2018359669 countsByYear W20183596692016 @default.
- W2018359669 countsByYear W20183596692017 @default.
- W2018359669 countsByYear W20183596692018 @default.
- W2018359669 countsByYear W20183596692019 @default.
- W2018359669 countsByYear W20183596692020 @default.
- W2018359669 countsByYear W20183596692021 @default.
- W2018359669 countsByYear W20183596692022 @default.
- W2018359669 countsByYear W20183596692023 @default.
- W2018359669 crossrefType "journal-article" @default.
- W2018359669 hasAuthorship W2018359669A5009222136 @default.
- W2018359669 hasAuthorship W2018359669A5014780974 @default.
- W2018359669 hasAuthorship W2018359669A5084981285 @default.
- W2018359669 hasAuthorship W2018359669A5087915677 @default.
- W2018359669 hasConcept C11413529 @default.
- W2018359669 hasConcept C121332964 @default.
- W2018359669 hasConcept C134306372 @default.
- W2018359669 hasConcept C154945302 @default.
- W2018359669 hasConcept C158622935 @default.
- W2018359669 hasConcept C182365436 @default.
- W2018359669 hasConcept C186108316 @default.
- W2018359669 hasConcept C195975749 @default.
- W2018359669 hasConcept C29470771 @default.
- W2018359669 hasConcept C33923547 @default.
- W2018359669 hasConcept C41008148 @default.
- W2018359669 hasConcept C50644808 @default.
- W2018359669 hasConcept C58166 @default.
- W2018359669 hasConcept C62520636 @default.
- W2018359669 hasConceptScore W2018359669C11413529 @default.
- W2018359669 hasConceptScore W2018359669C121332964 @default.
- W2018359669 hasConceptScore W2018359669C134306372 @default.
- W2018359669 hasConceptScore W2018359669C154945302 @default.
- W2018359669 hasConceptScore W2018359669C158622935 @default.
- W2018359669 hasConceptScore W2018359669C182365436 @default.
- W2018359669 hasConceptScore W2018359669C186108316 @default.
- W2018359669 hasConceptScore W2018359669C195975749 @default.
- W2018359669 hasConceptScore W2018359669C29470771 @default.
- W2018359669 hasConceptScore W2018359669C33923547 @default.
- W2018359669 hasConceptScore W2018359669C41008148 @default.
- W2018359669 hasConceptScore W2018359669C50644808 @default.
- W2018359669 hasConceptScore W2018359669C58166 @default.
- W2018359669 hasConceptScore W2018359669C62520636 @default.
- W2018359669 hasLocation W20183596691 @default.
- W2018359669 hasOpenAccess W2018359669 @default.
- W2018359669 hasPrimaryLocation W20183596691 @default.
- W2018359669 hasRelatedWork W2006360470 @default.
- W2018359669 hasRelatedWork W2158261501 @default.
- W2018359669 hasRelatedWork W2300290509 @default.
- W2018359669 hasRelatedWork W2349259621 @default.
- W2018359669 hasRelatedWork W2359569932 @default.
- W2018359669 hasRelatedWork W2376151503 @default.
- W2018359669 hasRelatedWork W2503963865 @default.