Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018360010> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2018360010 endingPage "490" @default.
- W2018360010 startingPage "490" @default.
- W2018360010 abstract "1. B. Mazur [10] and M. Brown [2] have contributed to a general theorem on the unknotting of (n - 1)-spheres in the n-sphere. In its most recent form [4], it states that if X is a subset of the n-sphere Sn, where X is homeomorphic to Sn-1, and if X satisfies a topological condition of local smoothness, then there is a homeomorphism of Sn onto itself which takes X onto an equatorial (n - 1)-sphere of Sn. One wonders whether an analogous statement is true about subsets Y of Sn, where Y is homeomorphic to Sk, for values of k other than k = n - 1. It is a classical fact that knotted smooth spheres occur when k = n - 2. But otherwise there are no known examples of truly knotted spheres Sk in Sn, except when there is some sort of local pathology. Here we shall show that a locally smooth k-sphere embedded in So is indeed topologically unknotted, provided k 5. The case of a locally smooth 1-sphere in S4 is unsolved. A condition will be given which insures that an (n - 2)-sphere X contained smoothly in Sn is unknotted. It is that n > 5 and Sn - X have the homotopy type of S1. The case of a 2-sphere in S4 is unsolved. As for 1-spheres in S3, the problem has been settled by a special result in 3-dimensional topology [1] and by Dehn's lemma [11]. When the k-sphere X contained in Sn is smooth except possibly at one point, and k 5, then it is shown that X is unknotted. The case of knots which may fail to be smooth at two points cannot be handled by this method. This odd state of affairs appears related to the difficulties in the isotopy conjecture, that a homeomorphism of degree one of Sn on itself should be isotopic to the identity map. The proof of these results is rather complicated. It is necessary to study in detail homotopy properties of the complement of a smooth knot. A delicate application of the engulfing theorem [12] is made. The proof is completed by applying a result about the union of open cones [13]. Comparion with the piecewise-linear unknotting theorem of E. C. Zeeman [15] shows this. Zeeman's theorem, and ours, have an analogous appearance and a region of overlap. Furthermore, both are proved by somewhat similar piecewise-linear methods. Zeeman's result is much stronger than ours when applied to piecewise-linear embeddings of" @default.
- W2018360010 created "2016-06-24" @default.
- W2018360010 creator A5050888124 @default.
- W2018360010 date "1963-05-01" @default.
- W2018360010 modified "2023-09-27" @default.
- W2018360010 title "On Topologically Unknotted Spheres" @default.
- W2018360010 cites W1972106208 @default.
- W2018360010 cites W2000171762 @default.
- W2018360010 cites W2046576344 @default.
- W2018360010 cites W2088426764 @default.
- W2018360010 cites W2088434114 @default.
- W2018360010 cites W2320452587 @default.
- W2018360010 cites W2323851178 @default.
- W2018360010 cites W2334017186 @default.
- W2018360010 doi "https://doi.org/10.2307/1970127" @default.
- W2018360010 hasPublicationYear "1963" @default.
- W2018360010 type Work @default.
- W2018360010 sameAs 2018360010 @default.
- W2018360010 citedByCount "83" @default.
- W2018360010 countsByYear W20183600102012 @default.
- W2018360010 countsByYear W20183600102014 @default.
- W2018360010 countsByYear W20183600102016 @default.
- W2018360010 countsByYear W20183600102018 @default.
- W2018360010 countsByYear W20183600102019 @default.
- W2018360010 countsByYear W20183600102021 @default.
- W2018360010 countsByYear W20183600102022 @default.
- W2018360010 countsByYear W20183600102023 @default.
- W2018360010 crossrefType "journal-article" @default.
- W2018360010 hasAuthorship W2018360010A5050888124 @default.
- W2018360010 hasConcept C114614502 @default.
- W2018360010 hasConcept C121332964 @default.
- W2018360010 hasConcept C1276947 @default.
- W2018360010 hasConcept C134306372 @default.
- W2018360010 hasConcept C202444582 @default.
- W2018360010 hasConcept C33923547 @default.
- W2018360010 hasConcept C72422203 @default.
- W2018360010 hasConceptScore W2018360010C114614502 @default.
- W2018360010 hasConceptScore W2018360010C121332964 @default.
- W2018360010 hasConceptScore W2018360010C1276947 @default.
- W2018360010 hasConceptScore W2018360010C134306372 @default.
- W2018360010 hasConceptScore W2018360010C202444582 @default.
- W2018360010 hasConceptScore W2018360010C33923547 @default.
- W2018360010 hasConceptScore W2018360010C72422203 @default.
- W2018360010 hasIssue "3" @default.
- W2018360010 hasLocation W20183600101 @default.
- W2018360010 hasOpenAccess W2018360010 @default.
- W2018360010 hasPrimaryLocation W20183600101 @default.
- W2018360010 hasRelatedWork W1978042415 @default.
- W2018360010 hasRelatedWork W1985218657 @default.
- W2018360010 hasRelatedWork W1989920940 @default.
- W2018360010 hasRelatedWork W2017331178 @default.
- W2018360010 hasRelatedWork W2076002049 @default.
- W2018360010 hasRelatedWork W2096753949 @default.
- W2018360010 hasRelatedWork W2976797620 @default.
- W2018360010 hasRelatedWork W3086542228 @default.
- W2018360010 hasRelatedWork W3103780039 @default.
- W2018360010 hasRelatedWork W4249580765 @default.
- W2018360010 hasVolume "77" @default.
- W2018360010 isParatext "false" @default.
- W2018360010 isRetracted "false" @default.
- W2018360010 magId "2018360010" @default.
- W2018360010 workType "article" @default.