Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018366821> ?p ?o ?g. }
- W2018366821 endingPage "2493" @default.
- W2018366821 startingPage "2477" @default.
- W2018366821 abstract "A multi-layer perceptron (MLP) network using error back propagation algorithm is employed in this paper to estimate the damage parameters from broad-band spectral data as diagnostic signal. Various existing models of damage in laminated composite and the resulting stiffness degradation are discussed from comparative view-point. Degradation of ply properties can be considered to be one of the damage model parameters while monitoring transverse matrix cracks in cross-ply, splitting in longitudinal ply, and evolution of consecutive stages of damage, such as delaminations and fiber fracture. The stiffness degradation factor, the location and size of the damaged zone in laminated composite beam are considered as damage model parameters in the present paper. Fourier spectral data, which is typical to most of the diagnostic wave measurements, are used as input to the neural network. Since, training the neural network in such case involves many data sets and all of these data are difficult to generate using experiments, a spectral finite element model (SFEM) with embedded degraded zone in laminated composite beam is developed. Numerical simulation using this element is carried out, which shows the nature of temporal signal that are likely to be measured. Analytical studies on the performance of the neural network are presented based on numerically simulated data. Effect of measurement noise on the network performance is also reported." @default.
- W2018366821 created "2016-06-24" @default.
- W2018366821 creator A5005343135 @default.
- W2018366821 creator A5032350542 @default.
- W2018366821 creator A5071735046 @default.
- W2018366821 creator A5078256024 @default.
- W2018366821 creator A5081411825 @default.
- W2018366821 date "2004-12-01" @default.
- W2018366821 modified "2023-10-16" @default.
- W2018366821 title "Estimation of composite damage model parameters using spectral finite element and neural network" @default.
- W2018366821 cites W1498436455 @default.
- W2018366821 cites W1590249316 @default.
- W2018366821 cites W1964734452 @default.
- W2018366821 cites W1965942550 @default.
- W2018366821 cites W1966332297 @default.
- W2018366821 cites W1966339700 @default.
- W2018366821 cites W1967039703 @default.
- W2018366821 cites W1967693561 @default.
- W2018366821 cites W1970298806 @default.
- W2018366821 cites W1975926472 @default.
- W2018366821 cites W1983789904 @default.
- W2018366821 cites W1984045521 @default.
- W2018366821 cites W1986309107 @default.
- W2018366821 cites W1988072542 @default.
- W2018366821 cites W1988384862 @default.
- W2018366821 cites W1989138825 @default.
- W2018366821 cites W1990611991 @default.
- W2018366821 cites W1997819513 @default.
- W2018366821 cites W2000949192 @default.
- W2018366821 cites W2002232032 @default.
- W2018366821 cites W2005768201 @default.
- W2018366821 cites W2007091142 @default.
- W2018366821 cites W2009617181 @default.
- W2018366821 cites W2012419003 @default.
- W2018366821 cites W2013950195 @default.
- W2018366821 cites W2015154828 @default.
- W2018366821 cites W2018231878 @default.
- W2018366821 cites W2024087988 @default.
- W2018366821 cites W2025874494 @default.
- W2018366821 cites W2032440114 @default.
- W2018366821 cites W2033282302 @default.
- W2018366821 cites W2035309874 @default.
- W2018366821 cites W2039754682 @default.
- W2018366821 cites W2041922252 @default.
- W2018366821 cites W2044745720 @default.
- W2018366821 cites W2050595900 @default.
- W2018366821 cites W2056967004 @default.
- W2018366821 cites W2057589499 @default.
- W2018366821 cites W2059738285 @default.
- W2018366821 cites W2060545271 @default.
- W2018366821 cites W2063883772 @default.
- W2018366821 cites W2066429010 @default.
- W2018366821 cites W2070671745 @default.
- W2018366821 cites W2073104990 @default.
- W2018366821 cites W2073422311 @default.
- W2018366821 cites W2074404105 @default.
- W2018366821 cites W2078820017 @default.
- W2018366821 cites W2080312226 @default.
- W2018366821 cites W2080509397 @default.
- W2018366821 cites W2081877982 @default.
- W2018366821 cites W2090207475 @default.
- W2018366821 cites W2095216143 @default.
- W2018366821 cites W2095424312 @default.
- W2018366821 cites W2100722180 @default.
- W2018366821 cites W2101346803 @default.
- W2018366821 cites W2104428267 @default.
- W2018366821 cites W2153375695 @default.
- W2018366821 cites W2156414736 @default.
- W2018366821 cites W2167988997 @default.
- W2018366821 cites W2169303706 @default.
- W2018366821 cites W4245068852 @default.
- W2018366821 cites W4247922250 @default.
- W2018366821 doi "https://doi.org/10.1016/j.compscitech.2004.05.010" @default.
- W2018366821 hasPublicationYear "2004" @default.
- W2018366821 type Work @default.
- W2018366821 sameAs 2018366821 @default.
- W2018366821 citedByCount "29" @default.
- W2018366821 countsByYear W20183668212013 @default.
- W2018366821 countsByYear W20183668212014 @default.
- W2018366821 countsByYear W20183668212017 @default.
- W2018366821 countsByYear W20183668212018 @default.
- W2018366821 countsByYear W20183668212021 @default.
- W2018366821 countsByYear W20183668212023 @default.
- W2018366821 crossrefType "journal-article" @default.
- W2018366821 hasAuthorship W2018366821A5005343135 @default.
- W2018366821 hasAuthorship W2018366821A5032350542 @default.
- W2018366821 hasAuthorship W2018366821A5071735046 @default.
- W2018366821 hasAuthorship W2018366821A5078256024 @default.
- W2018366821 hasAuthorship W2018366821A5081411825 @default.
- W2018366821 hasConcept C104779481 @default.
- W2018366821 hasConcept C127413603 @default.
- W2018366821 hasConcept C135628077 @default.
- W2018366821 hasConcept C154945302 @default.
- W2018366821 hasConcept C159985019 @default.
- W2018366821 hasConcept C192562407 @default.
- W2018366821 hasConcept C41008148 @default.
- W2018366821 hasConcept C50644808 @default.
- W2018366821 hasConcept C66938386 @default.