Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018377816> ?p ?o ?g. }
- W2018377816 endingPage "0" @default.
- W2018377816 startingPage "0" @default.
- W2018377816 abstract "In the first half of this text we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch & Silbermann and Lindner) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang. We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator $A$. In the second half of this text we study bounded linear operators on the generalised sequence space $ell^p(Z^N,U)$, where $pin [1,infty]$ and $U$ is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator $A$ is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of $p=1$ and $infty$. Our tools in this study are the results from the first half of the text and an exploitation of the partial duality between $ell^1$ and $ell^infty$. Results in this second half of the text include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrodinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on $R^N$." @default.
- W2018377816 created "2016-06-24" @default.
- W2018377816 creator A5016021916 @default.
- W2018377816 creator A5037304012 @default.
- W2018377816 date "2011-01-01" @default.
- W2018377816 modified "2023-10-06" @default.
- W2018377816 title "Limit operators, collective compactness, and the spectral theory of infinite matrices" @default.
- W2018377816 cites W144738353 @default.
- W2018377816 cites W1484335179 @default.
- W2018377816 cites W149522324 @default.
- W2018377816 cites W1517424112 @default.
- W2018377816 cites W1518139628 @default.
- W2018377816 cites W1525352687 @default.
- W2018377816 cites W1554779374 @default.
- W2018377816 cites W1600977221 @default.
- W2018377816 cites W163159361 @default.
- W2018377816 cites W166129609 @default.
- W2018377816 cites W1862149810 @default.
- W2018377816 cites W1963744335 @default.
- W2018377816 cites W1964578330 @default.
- W2018377816 cites W1967321976 @default.
- W2018377816 cites W1971847684 @default.
- W2018377816 cites W1974233217 @default.
- W2018377816 cites W1976596985 @default.
- W2018377816 cites W1986032977 @default.
- W2018377816 cites W1988224016 @default.
- W2018377816 cites W1991497094 @default.
- W2018377816 cites W1993736194 @default.
- W2018377816 cites W2007780436 @default.
- W2018377816 cites W2012759929 @default.
- W2018377816 cites W2014213942 @default.
- W2018377816 cites W2017449639 @default.
- W2018377816 cites W2021264563 @default.
- W2018377816 cites W2022455093 @default.
- W2018377816 cites W2022652918 @default.
- W2018377816 cites W2024915576 @default.
- W2018377816 cites W2026237747 @default.
- W2018377816 cites W2035744711 @default.
- W2018377816 cites W2038112142 @default.
- W2018377816 cites W2040500817 @default.
- W2018377816 cites W2040720697 @default.
- W2018377816 cites W2041617232 @default.
- W2018377816 cites W2044042856 @default.
- W2018377816 cites W2046278027 @default.
- W2018377816 cites W2046854504 @default.
- W2018377816 cites W2051772019 @default.
- W2018377816 cites W2052524090 @default.
- W2018377816 cites W2052694151 @default.
- W2018377816 cites W2054207680 @default.
- W2018377816 cites W2057181637 @default.
- W2018377816 cites W2061204267 @default.
- W2018377816 cites W2061522191 @default.
- W2018377816 cites W2070327824 @default.
- W2018377816 cites W2076766879 @default.
- W2018377816 cites W2077843282 @default.
- W2018377816 cites W2079178764 @default.
- W2018377816 cites W2079603056 @default.
- W2018377816 cites W2080273268 @default.
- W2018377816 cites W2080349055 @default.
- W2018377816 cites W2083299736 @default.
- W2018377816 cites W2084297791 @default.
- W2018377816 cites W2084931309 @default.
- W2018377816 cites W2086085861 @default.
- W2018377816 cites W2095249993 @default.
- W2018377816 cites W2107107564 @default.
- W2018377816 cites W2112631507 @default.
- W2018377816 cites W211922203 @default.
- W2018377816 cites W2156783528 @default.
- W2018377816 cites W2161123086 @default.
- W2018377816 cites W2169813829 @default.
- W2018377816 cites W277860007 @default.
- W2018377816 cites W2782616107 @default.
- W2018377816 cites W2964057317 @default.
- W2018377816 cites W3105084266 @default.
- W2018377816 cites W3105465808 @default.
- W2018377816 cites W363876572 @default.
- W2018377816 cites W368844358 @default.
- W2018377816 cites W622405849 @default.
- W2018377816 cites W110695348 @default.
- W2018377816 doi "https://doi.org/10.1090/s0065-9266-2010-00626-4" @default.
- W2018377816 hasPublicationYear "2011" @default.
- W2018377816 type Work @default.
- W2018377816 sameAs 2018377816 @default.
- W2018377816 citedByCount "11" @default.
- W2018377816 countsByYear W20183778162013 @default.
- W2018377816 countsByYear W20183778162014 @default.
- W2018377816 countsByYear W20183778162015 @default.
- W2018377816 countsByYear W20183778162017 @default.
- W2018377816 countsByYear W20183778162018 @default.
- W2018377816 countsByYear W20183778162020 @default.
- W2018377816 countsByYear W20183778162021 @default.
- W2018377816 countsByYear W20183778162022 @default.
- W2018377816 crossrefType "journal-article" @default.
- W2018377816 hasAuthorship W2018377816A5016021916 @default.
- W2018377816 hasAuthorship W2018377816A5037304012 @default.
- W2018377816 hasBestOaLocation W20183778162 @default.
- W2018377816 hasConcept C104317684 @default.
- W2018377816 hasConcept C118615104 @default.