Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018409903> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2018409903 endingPage "535" @default.
- W2018409903 startingPage "527" @default.
- W2018409903 abstract "분광혼합분석을 효과적으로 수행하기 위한 정확한 endmember의 추출은 반드시 선행되어야할 조건이며, 이를 위한 다양한 endmember 추출 알고리즘들이 개발되었다. 이러한 endmember 추출 알고리즘의 개발 및 적용성을 평가하기 위한 기존의 연구는 대부분 모의 초분광 영상 또는 AVIRIS 영상을 대상으로 진행되었다. 그러나 이러한 영상 자료는 실제 국내에서 획득되고 활용할 수 있는 초분광 영상과 차이를 보일 수 있다. 따라서 본 연구에서는 국내에서 취득된 AISA 초분광 영상에 대하여 대표적인 endmember추출 알고리즘을 사용하고, 그 적용성을 평가하였다. 물질의 종류 및 크기에 따른 차이를 분석하기 위하여 인공적으로 설계한 테스트베드를 구축하고, AISA 초분광 영상을 취득하여 실험 자료로 이용하였다. 실험결과, 테스트베드 내 물질과 초기 입력값에 따라 알고리즘별로 endmember 추출결과가 다르게 나타났다. 따라서 효과적인 endmember 추출 알고리즘을 적용하기 위해서는 영상을 구성하는 테스트베드 내 물질의 특성 및 최적의 endmember의 개수를 고려해야 할 것이다. Extraction of correct endmembers is prerequisite to successful spectral unmixing analysis. Various endmember extraction algorithms have been proposed and most experiments based on endmember extraction have used synthetic image and AVIRIS image data. However, these data can present different characteristics comparing with hyperspectral images acquired from real domestic environment. For this study, a test-bed was constructed for analysing the difference on diverse substances and sizes in domestic areas, and AISA hyperspectral imagery acquired from the test-bed was tested with two well-known endmember extraction algorithms: IEA, and N-FINDR. The results indicated that two different algorithms depended on the number of endmembers and material types in the test-bed. Therefore, optimized number of endmembers and characteristics of materials in test-bed site should be considered for the effective application of endmember extraction algorithms." @default.
- W2018409903 created "2016-06-24" @default.
- W2018409903 creator A5005671801 @default.
- W2018409903 creator A5076998023 @default.
- W2018409903 creator A5082613258 @default.
- W2018409903 creator A5090645725 @default.
- W2018409903 date "2013-10-31" @default.
- W2018409903 modified "2023-10-06" @default.
- W2018409903 title "Applicability Evaluation of Endmember Extraction Algorithms on the AISA Hyperspectral Images" @default.
- W2018409903 cites W1929512323 @default.
- W2018409903 cites W1997795828 @default.
- W2018409903 cites W2000779965 @default.
- W2018409903 cites W2009539575 @default.
- W2018409903 cites W2010797000 @default.
- W2018409903 cites W2061724066 @default.
- W2018409903 cites W2066873261 @default.
- W2018409903 cites W2071131473 @default.
- W2018409903 cites W2092819825 @default.
- W2018409903 cites W2093628091 @default.
- W2018409903 cites W2094304765 @default.
- W2018409903 cites W2097153652 @default.
- W2018409903 cites W2098648525 @default.
- W2018409903 cites W2107222994 @default.
- W2018409903 cites W2114486983 @default.
- W2018409903 cites W2117741752 @default.
- W2018409903 cites W2147043781 @default.
- W2018409903 cites W2172227455 @default.
- W2018409903 cites W3139499394 @default.
- W2018409903 cites W68373054 @default.
- W2018409903 doi "https://doi.org/10.7780/kjrs.2013.29.5.8" @default.
- W2018409903 hasPublicationYear "2013" @default.
- W2018409903 type Work @default.
- W2018409903 sameAs 2018409903 @default.
- W2018409903 citedByCount "1" @default.
- W2018409903 countsByYear W20184099032014 @default.
- W2018409903 crossrefType "journal-article" @default.
- W2018409903 hasAuthorship W2018409903A5005671801 @default.
- W2018409903 hasAuthorship W2018409903A5076998023 @default.
- W2018409903 hasAuthorship W2018409903A5082613258 @default.
- W2018409903 hasAuthorship W2018409903A5090645725 @default.
- W2018409903 hasBestOaLocation W20184099031 @default.
- W2018409903 hasConcept C11413529 @default.
- W2018409903 hasConcept C127313418 @default.
- W2018409903 hasConcept C153180895 @default.
- W2018409903 hasConcept C154945302 @default.
- W2018409903 hasConcept C159078339 @default.
- W2018409903 hasConcept C185592680 @default.
- W2018409903 hasConcept C41008148 @default.
- W2018409903 hasConcept C43617362 @default.
- W2018409903 hasConcept C4725764 @default.
- W2018409903 hasConcept C58237817 @default.
- W2018409903 hasConcept C62649853 @default.
- W2018409903 hasConceptScore W2018409903C11413529 @default.
- W2018409903 hasConceptScore W2018409903C127313418 @default.
- W2018409903 hasConceptScore W2018409903C153180895 @default.
- W2018409903 hasConceptScore W2018409903C154945302 @default.
- W2018409903 hasConceptScore W2018409903C159078339 @default.
- W2018409903 hasConceptScore W2018409903C185592680 @default.
- W2018409903 hasConceptScore W2018409903C41008148 @default.
- W2018409903 hasConceptScore W2018409903C43617362 @default.
- W2018409903 hasConceptScore W2018409903C4725764 @default.
- W2018409903 hasConceptScore W2018409903C58237817 @default.
- W2018409903 hasConceptScore W2018409903C62649853 @default.
- W2018409903 hasIssue "5" @default.
- W2018409903 hasLocation W20184099031 @default.
- W2018409903 hasOpenAccess W2018409903 @default.
- W2018409903 hasPrimaryLocation W20184099031 @default.
- W2018409903 hasRelatedWork W1984423460 @default.
- W2018409903 hasRelatedWork W2038613955 @default.
- W2018409903 hasRelatedWork W2086636525 @default.
- W2018409903 hasRelatedWork W2147723763 @default.
- W2018409903 hasRelatedWork W2156820763 @default.
- W2018409903 hasRelatedWork W232370641 @default.
- W2018409903 hasRelatedWork W2364107869 @default.
- W2018409903 hasRelatedWork W2364219947 @default.
- W2018409903 hasRelatedWork W2553040330 @default.
- W2018409903 hasRelatedWork W2727524883 @default.
- W2018409903 hasVolume "29" @default.
- W2018409903 isParatext "false" @default.
- W2018409903 isRetracted "false" @default.
- W2018409903 magId "2018409903" @default.
- W2018409903 workType "article" @default.