Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018492806> ?p ?o ?g. }
- W2018492806 endingPage "236" @default.
- W2018492806 startingPage "223" @default.
- W2018492806 abstract "The purpose of the study was to assess the impact of various model structures on REML estimates of variance components using data on alevin weight from two replicate populations from the Genetic Improvement Program for Coho salmon (Chile). Data consisted of 130 d alevin weight from a dams-nested-within-sires mating design over two consecutive generations. Relationship information included direct and collateral relatives but parental individuals lacked records. The construction of a range of animal models considered random effects of direct additive genetic, maternal additive genetic and full-sib family effects as well as the covariance of direct and maternal genetic effects. Fixed effects of year (generation) and spawn date of dams within year were considered and also evaluated. The relative effectiveness of various models in describing the data set were assessed using likelihood ratio tests. The results demonstrated the importance of the correct interpretation of effects in the data set, particularly those effects that can influence the resemblance between relatives. The data structure, as well as the animal model applied, markedly influenced the magnitude of variance component estimates. Models based on year as the only fixed effect did not describe the data nearly as effectively as models containing both year and spawn data of dams within year. Simple models based on animal as the only random effect gave upward biased estimates of additive genetic variance. The most appropriate model for the data set was one based on both year and spawn date as fixed effects, and animal and full-sib family as random effects. The results from models combining maternal genetic and full-sib family effects to exploit the full covariance structure of the data showed that there was confounding between these variance component estimates. The most consistent interpretation of this result was that common environmental effects and non-additive genetic effects were more important sources of variability than maternal genetic effects. The study also demonstrated high variability in parameter estimates for replicate populations." @default.
- W2018492806 created "2016-06-24" @default.
- W2018492806 creator A5003560259 @default.
- W2018492806 creator A5004594193 @default.
- W2018492806 creator A5076117245 @default.
- W2018492806 date "1999-11-01" @default.
- W2018492806 modified "2023-10-10" @default.
- W2018492806 title "Estimation of genetic parameters from pedigreed populations: lessons from analysis of alevin weight in Coho salmon (Oncorhynchus kisutch)" @default.
- W2018492806 cites W1529661828 @default.
- W2018492806 cites W1984046516 @default.
- W2018492806 cites W1994352473 @default.
- W2018492806 cites W2000084758 @default.
- W2018492806 cites W2004188510 @default.
- W2018492806 cites W2006684552 @default.
- W2018492806 cites W2016794916 @default.
- W2018492806 cites W2023854955 @default.
- W2018492806 cites W2031189333 @default.
- W2018492806 cites W2031997011 @default.
- W2018492806 cites W2055828966 @default.
- W2018492806 cites W2060440761 @default.
- W2018492806 cites W2073803421 @default.
- W2018492806 cites W2074819331 @default.
- W2018492806 cites W2081522649 @default.
- W2018492806 cites W2088223342 @default.
- W2018492806 cites W2096250379 @default.
- W2018492806 cites W2139743539 @default.
- W2018492806 cites W2171074980 @default.
- W2018492806 cites W2270946657 @default.
- W2018492806 cites W2286593242 @default.
- W2018492806 cites W2327195044 @default.
- W2018492806 cites W2418887807 @default.
- W2018492806 cites W2565699369 @default.
- W2018492806 cites W25909352 @default.
- W2018492806 doi "https://doi.org/10.1016/s0044-8486(99)00203-3" @default.
- W2018492806 hasPublicationYear "1999" @default.
- W2018492806 type Work @default.
- W2018492806 sameAs 2018492806 @default.
- W2018492806 citedByCount "46" @default.
- W2018492806 countsByYear W20184928062012 @default.
- W2018492806 countsByYear W20184928062013 @default.
- W2018492806 countsByYear W20184928062014 @default.
- W2018492806 countsByYear W20184928062015 @default.
- W2018492806 countsByYear W20184928062016 @default.
- W2018492806 countsByYear W20184928062017 @default.
- W2018492806 countsByYear W20184928062018 @default.
- W2018492806 countsByYear W20184928062020 @default.
- W2018492806 countsByYear W20184928062021 @default.
- W2018492806 countsByYear W20184928062022 @default.
- W2018492806 crossrefType "journal-article" @default.
- W2018492806 hasAuthorship W2018492806A5003560259 @default.
- W2018492806 hasAuthorship W2018492806A5004594193 @default.
- W2018492806 hasAuthorship W2018492806A5076117245 @default.
- W2018492806 hasConcept C104201883 @default.
- W2018492806 hasConcept C104317684 @default.
- W2018492806 hasConcept C105795698 @default.
- W2018492806 hasConcept C126322002 @default.
- W2018492806 hasConcept C134018914 @default.
- W2018492806 hasConcept C16012445 @default.
- W2018492806 hasConcept C161890455 @default.
- W2018492806 hasConcept C168743327 @default.
- W2018492806 hasConcept C17458331 @default.
- W2018492806 hasConcept C18903297 @default.
- W2018492806 hasConcept C2778117688 @default.
- W2018492806 hasConcept C2779140988 @default.
- W2018492806 hasConcept C2909208804 @default.
- W2018492806 hasConcept C2992519594 @default.
- W2018492806 hasConcept C3018076075 @default.
- W2018492806 hasConcept C33923547 @default.
- W2018492806 hasConcept C49781872 @default.
- W2018492806 hasConcept C505870484 @default.
- W2018492806 hasConcept C54355233 @default.
- W2018492806 hasConcept C61420037 @default.
- W2018492806 hasConcept C71924100 @default.
- W2018492806 hasConcept C78458016 @default.
- W2018492806 hasConcept C86803240 @default.
- W2018492806 hasConcept C95190672 @default.
- W2018492806 hasConceptScore W2018492806C104201883 @default.
- W2018492806 hasConceptScore W2018492806C104317684 @default.
- W2018492806 hasConceptScore W2018492806C105795698 @default.
- W2018492806 hasConceptScore W2018492806C126322002 @default.
- W2018492806 hasConceptScore W2018492806C134018914 @default.
- W2018492806 hasConceptScore W2018492806C16012445 @default.
- W2018492806 hasConceptScore W2018492806C161890455 @default.
- W2018492806 hasConceptScore W2018492806C168743327 @default.
- W2018492806 hasConceptScore W2018492806C17458331 @default.
- W2018492806 hasConceptScore W2018492806C18903297 @default.
- W2018492806 hasConceptScore W2018492806C2778117688 @default.
- W2018492806 hasConceptScore W2018492806C2779140988 @default.
- W2018492806 hasConceptScore W2018492806C2909208804 @default.
- W2018492806 hasConceptScore W2018492806C2992519594 @default.
- W2018492806 hasConceptScore W2018492806C3018076075 @default.
- W2018492806 hasConceptScore W2018492806C33923547 @default.
- W2018492806 hasConceptScore W2018492806C49781872 @default.
- W2018492806 hasConceptScore W2018492806C505870484 @default.
- W2018492806 hasConceptScore W2018492806C54355233 @default.
- W2018492806 hasConceptScore W2018492806C61420037 @default.
- W2018492806 hasConceptScore W2018492806C71924100 @default.
- W2018492806 hasConceptScore W2018492806C78458016 @default.