Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018508748> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2018508748 endingPage "455" @default.
- W2018508748 startingPage "455" @default.
- W2018508748 abstract "For any amenable locally compact group G, space of multipliers MA(G) of Fourier algebra A(G) coincides with space B(G) of functions on G that are linear combinations of continuous positive definite functions. We prove that MA(G)B(G) * 0 for many non-amenable connected groups. More specifically we prove that MOA(G)B(G) * 0 for classical complex Lie groups, and general Lorentz groups SOO(n, 1), n > 2. MOA(G) is a certain subspace of MA(G), which we call space of completely bounded multipliers of A(G). Unlike MA(G), space MOA(G) has nice stability properties with respect to direct products of groups. It is known that Fourier algebra of free group on N generators (N 2 2) admits an unbounded approximate unit ((Pn), which is bounded in multiplier norm. We extend this result to any closed subgroup of general Lorentz group SOO(n, 1). Moreover we show that for these groups ((Pn) can be chosen to be bounded with respect to MOA(G)-norm. By a duality argument we obtain that reduced C*-algebra of every discrete subgroup of SOO(n, 1) has the completely bounded approximation property. In particular this property holds for C* (F2), reduced C*-algebra of free group on two generators. We also prove" @default.
- W2018508748 created "2016-06-24" @default.
- W2018508748 creator A5019166878 @default.
- W2018508748 creator A5025323920 @default.
- W2018508748 date "1985-04-01" @default.
- W2018508748 modified "2023-10-14" @default.
- W2018508748 title "Multipliers of the Fourier Algebras of Some Simple Lie Groups and Their Discrete Subgroups" @default.
- W2018508748 cites W1484246869 @default.
- W2018508748 cites W1508457673 @default.
- W2018508748 cites W152993550 @default.
- W2018508748 cites W1968215061 @default.
- W2018508748 cites W1971585707 @default.
- W2018508748 cites W1974557160 @default.
- W2018508748 cites W1993219465 @default.
- W2018508748 cites W2008975508 @default.
- W2018508748 cites W202438975 @default.
- W2018508748 cites W2032220545 @default.
- W2018508748 cites W2041936009 @default.
- W2018508748 cites W2050088735 @default.
- W2018508748 cites W2074676574 @default.
- W2018508748 cites W2079675468 @default.
- W2018508748 cites W2096750502 @default.
- W2018508748 cites W2312338118 @default.
- W2018508748 cites W2323322509 @default.
- W2018508748 cites W2323449974 @default.
- W2018508748 cites W2330633632 @default.
- W2018508748 cites W2331486915 @default.
- W2018508748 cites W2334561516 @default.
- W2018508748 cites W2400197430 @default.
- W2018508748 cites W2588911661 @default.
- W2018508748 cites W3038830718 @default.
- W2018508748 doi "https://doi.org/10.2307/2374423" @default.
- W2018508748 hasPublicationYear "1985" @default.
- W2018508748 type Work @default.
- W2018508748 sameAs 2018508748 @default.
- W2018508748 citedByCount "281" @default.
- W2018508748 countsByYear W20185087482012 @default.
- W2018508748 countsByYear W20185087482013 @default.
- W2018508748 countsByYear W20185087482014 @default.
- W2018508748 countsByYear W20185087482015 @default.
- W2018508748 countsByYear W20185087482016 @default.
- W2018508748 countsByYear W20185087482017 @default.
- W2018508748 countsByYear W20185087482018 @default.
- W2018508748 countsByYear W20185087482019 @default.
- W2018508748 countsByYear W20185087482020 @default.
- W2018508748 countsByYear W20185087482021 @default.
- W2018508748 countsByYear W20185087482022 @default.
- W2018508748 countsByYear W20185087482023 @default.
- W2018508748 crossrefType "journal-article" @default.
- W2018508748 hasAuthorship W2018508748A5019166878 @default.
- W2018508748 hasAuthorship W2018508748A5025323920 @default.
- W2018508748 hasConcept C102519508 @default.
- W2018508748 hasConcept C111472728 @default.
- W2018508748 hasConcept C134306372 @default.
- W2018508748 hasConcept C136119220 @default.
- W2018508748 hasConcept C138885662 @default.
- W2018508748 hasConcept C187915474 @default.
- W2018508748 hasConcept C202444582 @default.
- W2018508748 hasConcept C22365015 @default.
- W2018508748 hasConcept C2780586882 @default.
- W2018508748 hasConcept C33923547 @default.
- W2018508748 hasConcept C51568863 @default.
- W2018508748 hasConceptScore W2018508748C102519508 @default.
- W2018508748 hasConceptScore W2018508748C111472728 @default.
- W2018508748 hasConceptScore W2018508748C134306372 @default.
- W2018508748 hasConceptScore W2018508748C136119220 @default.
- W2018508748 hasConceptScore W2018508748C138885662 @default.
- W2018508748 hasConceptScore W2018508748C187915474 @default.
- W2018508748 hasConceptScore W2018508748C202444582 @default.
- W2018508748 hasConceptScore W2018508748C22365015 @default.
- W2018508748 hasConceptScore W2018508748C2780586882 @default.
- W2018508748 hasConceptScore W2018508748C33923547 @default.
- W2018508748 hasConceptScore W2018508748C51568863 @default.
- W2018508748 hasIssue "2" @default.
- W2018508748 hasLocation W20185087481 @default.
- W2018508748 hasOpenAccess W2018508748 @default.
- W2018508748 hasPrimaryLocation W20185087481 @default.
- W2018508748 hasRelatedWork W1968209254 @default.
- W2018508748 hasRelatedWork W1982990415 @default.
- W2018508748 hasRelatedWork W2020681214 @default.
- W2018508748 hasRelatedWork W2021495773 @default.
- W2018508748 hasRelatedWork W2065647063 @default.
- W2018508748 hasRelatedWork W2093102607 @default.
- W2018508748 hasRelatedWork W2984539704 @default.
- W2018508748 hasRelatedWork W3011491025 @default.
- W2018508748 hasRelatedWork W3131126226 @default.
- W2018508748 hasRelatedWork W4230292203 @default.
- W2018508748 hasVolume "107" @default.
- W2018508748 isParatext "false" @default.
- W2018508748 isRetracted "false" @default.
- W2018508748 magId "2018508748" @default.
- W2018508748 workType "article" @default.