Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018509194> ?p ?o ?g. }
- W2018509194 abstract "The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term correlations of non-stationary time series and the long-range correlations of fractal surfaces, which contains a parameter $theta$ determining the position of the detrending window. We develop multifractal detrending moving average (MFDMA) algorithms for the analysis of one-dimensional multifractal measures and higher-dimensional multifractals, which is a generalization of the DMA method. The performance of the one-dimensional and two-dimensional MFDMA methods is investigated using synthetic multifractal measures with analytical solutions for backward ($theta=0$), centered ($theta=0.5$), and forward ($theta=1$) detrending windows. We find that the estimated multifractal scaling exponent $tau(q)$ and the singularity spectrum $f(alpha)$ are in good agreement with the theoretical values. In addition, the backward MFDMA method has the best performance, which provides the most accurate estimates of the scaling exponents with lowest error bars, while the centered MFDMA method has the worse performance. It is found that the backward MFDMA algorithm also outperforms the multifractal detrended fluctuation analysis (MFDFA). The one-dimensional backward MFDMA method is applied to analyzing the time series of Shanghai Stock Exchange Composite Index and its multifractal nature is confirmed." @default.
- W2018509194 created "2016-06-24" @default.
- W2018509194 creator A5061944773 @default.
- W2018509194 creator A5075941726 @default.
- W2018509194 date "2010-07-27" @default.
- W2018509194 modified "2023-10-11" @default.
- W2018509194 title "Detrending moving average algorithm for multifractals" @default.
- W2018509194 cites W1965499600 @default.
- W2018509194 cites W1970410877 @default.
- W2018509194 cites W1970794879 @default.
- W2018509194 cites W1973072331 @default.
- W2018509194 cites W1974209637 @default.
- W2018509194 cites W1980118756 @default.
- W2018509194 cites W1986876468 @default.
- W2018509194 cites W1991595392 @default.
- W2018509194 cites W2011005041 @default.
- W2018509194 cites W2012548631 @default.
- W2018509194 cites W2015690955 @default.
- W2018509194 cites W2017032475 @default.
- W2018509194 cites W2017405438 @default.
- W2018509194 cites W2017738582 @default.
- W2018509194 cites W2017821362 @default.
- W2018509194 cites W2026623386 @default.
- W2018509194 cites W2031831967 @default.
- W2018509194 cites W2032110877 @default.
- W2018509194 cites W2032456190 @default.
- W2018509194 cites W2033750748 @default.
- W2018509194 cites W2036280280 @default.
- W2018509194 cites W2036904089 @default.
- W2018509194 cites W2036982624 @default.
- W2018509194 cites W2039854215 @default.
- W2018509194 cites W2045486636 @default.
- W2018509194 cites W2051663902 @default.
- W2018509194 cites W2059656582 @default.
- W2018509194 cites W2061742818 @default.
- W2018509194 cites W2064190404 @default.
- W2018509194 cites W2071602085 @default.
- W2018509194 cites W2078206416 @default.
- W2018509194 cites W2087829439 @default.
- W2018509194 cites W2089062302 @default.
- W2018509194 cites W2089409887 @default.
- W2018509194 cites W2091555286 @default.
- W2018509194 cites W2103847004 @default.
- W2018509194 cites W2129888943 @default.
- W2018509194 cites W2143392227 @default.
- W2018509194 cites W2145106290 @default.
- W2018509194 cites W2149093093 @default.
- W2018509194 cites W2149976212 @default.
- W2018509194 cites W2165773639 @default.
- W2018509194 cites W2166296979 @default.
- W2018509194 cites W2168902681 @default.
- W2018509194 cites W2341760625 @default.
- W2018509194 cites W4294183471 @default.
- W2018509194 cites W4301937586 @default.
- W2018509194 cites W67284852 @default.
- W2018509194 doi "https://doi.org/10.1103/physreve.82.011136" @default.
- W2018509194 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20866594" @default.
- W2018509194 hasPublicationYear "2010" @default.
- W2018509194 type Work @default.
- W2018509194 sameAs 2018509194 @default.
- W2018509194 citedByCount "349" @default.
- W2018509194 countsByYear W20185091942012 @default.
- W2018509194 countsByYear W20185091942013 @default.
- W2018509194 countsByYear W20185091942014 @default.
- W2018509194 countsByYear W20185091942015 @default.
- W2018509194 countsByYear W20185091942016 @default.
- W2018509194 countsByYear W20185091942017 @default.
- W2018509194 countsByYear W20185091942018 @default.
- W2018509194 countsByYear W20185091942019 @default.
- W2018509194 countsByYear W20185091942020 @default.
- W2018509194 countsByYear W20185091942021 @default.
- W2018509194 countsByYear W20185091942022 @default.
- W2018509194 countsByYear W20185091942023 @default.
- W2018509194 crossrefType "journal-article" @default.
- W2018509194 hasAuthorship W2018509194A5061944773 @default.
- W2018509194 hasAuthorship W2018509194A5075941726 @default.
- W2018509194 hasBestOaLocation W20185091942 @default.
- W2018509194 hasConcept C105795698 @default.
- W2018509194 hasConcept C11413529 @default.
- W2018509194 hasConcept C121332964 @default.
- W2018509194 hasConcept C121864883 @default.
- W2018509194 hasConcept C127313418 @default.
- W2018509194 hasConcept C133905733 @default.
- W2018509194 hasConcept C134306372 @default.
- W2018509194 hasConcept C138885662 @default.
- W2018509194 hasConcept C143724316 @default.
- W2018509194 hasConcept C151730666 @default.
- W2018509194 hasConcept C16171025 @default.
- W2018509194 hasConcept C175706884 @default.
- W2018509194 hasConcept C177148314 @default.
- W2018509194 hasConcept C21689155 @default.
- W2018509194 hasConcept C2524010 @default.
- W2018509194 hasConcept C2780388253 @default.
- W2018509194 hasConcept C33923547 @default.
- W2018509194 hasConcept C40636538 @default.
- W2018509194 hasConcept C41895202 @default.
- W2018509194 hasConcept C99844830 @default.
- W2018509194 hasConceptScore W2018509194C105795698 @default.
- W2018509194 hasConceptScore W2018509194C11413529 @default.
- W2018509194 hasConceptScore W2018509194C121332964 @default.