Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018521326> ?p ?o ?g. }
- W2018521326 endingPage "7485" @default.
- W2018521326 startingPage "7476" @default.
- W2018521326 abstract "A new, easily synthesizable rhodamine-based chemosensor with potential N2O2 donor atoms, L3, has been characterized by single-crystal X-ray diffraction together with 1H NMR and high-resolution mass spectrometry (HRMS) studies. L3 was found to bind selectively and reversibly to the highly toxic Hg2+ ion. The binding stoichiometry and formation constant of the sensor toward Hg2+ were determined by various techniques, including UV–vis, fluorescence, and Job’s studies, and substantiated by HRMS methods. None of the biologically relevant and toxic heavy metal ions interfered with the detection of Hg2+ ion. The limit of detection of Hg2+calculated by the 3σ method was 1.62 nM. The biocompatibility of L3 with respect to its good solubility in mixed organic/aqueous media (MeCN/H2O) and cell permeability with no or negligible cytotoxicity provides good opportunities for in vitro/in vivo cell imaging studies. As the probe is poorly soluble in pure water, an attempt was made to frame nano/microstructures in the absence and in the presence of sodium dodecyl sulfate (SDS) as a soft template, which was found to be very useful in synthesizing morphologically interesting L3 microcrystals. In pure water, micro-organization of L3 indeed occurred with block-shaped morphology very similar to that in the presence of SDS as a template. However, when we added Hg2+ to the solution of L3 under the above two conditions, the morphologies of the microstructures were slightly different; in the first case, a flowerlike structure was observed, and in second case, a simple well-defined spherical microstructure was obtained. Optical microscopy revealed a dotlike microstructure for L3–SDS assemblies, which changed to a panicle microstructure in the presence of Hg2+. UV–vis absorption and steady-state and time-resolved fluorescence studies were also carried out in the absence and presence of Hg2+, and also the SDS concentration was varied at fixed concentrations of the receptor and guest. The results revealed that the fluorescence intensity increased steadily with [SDS] until it became saturated at ∼7 mM SDS, indicating that the extent of perturbation to the emissive species increases with the increase in [SDS] until it becomes thermodynamically stable. There was also an increase in anisotropy with increasing SDS concentration, which clearly manifests the restriction of movement of the probe in the presence of SDS." @default.
- W2018521326 created "2016-06-24" @default.
- W2018521326 creator A5017800593 @default.
- W2018521326 creator A5019336117 @default.
- W2018521326 creator A5021554658 @default.
- W2018521326 creator A5025653739 @default.
- W2018521326 creator A5036452925 @default.
- W2018521326 creator A5054045080 @default.
- W2018521326 date "2015-04-02" @default.
- W2018521326 modified "2023-09-26" @default.
- W2018521326 title "Morphology-Directing Synthesis of Rhodamine-Based Fluorophore Microstructures and Application toward Extra- and Intracellular Detection of Hg<sup>2+</sup>" @default.
- W2018521326 cites W1521480162 @default.
- W2018521326 cites W1964536703 @default.
- W2018521326 cites W1965711968 @default.
- W2018521326 cites W1965906086 @default.
- W2018521326 cites W1968854029 @default.
- W2018521326 cites W1976697354 @default.
- W2018521326 cites W1986628723 @default.
- W2018521326 cites W1989531414 @default.
- W2018521326 cites W1991950902 @default.
- W2018521326 cites W1996446854 @default.
- W2018521326 cites W1996472366 @default.
- W2018521326 cites W1999697294 @default.
- W2018521326 cites W2000562402 @default.
- W2018521326 cites W2005278974 @default.
- W2018521326 cites W2008443977 @default.
- W2018521326 cites W2008560883 @default.
- W2018521326 cites W2010340914 @default.
- W2018521326 cites W2012877587 @default.
- W2018521326 cites W2019076455 @default.
- W2018521326 cites W2019562415 @default.
- W2018521326 cites W2019715506 @default.
- W2018521326 cites W2022626140 @default.
- W2018521326 cites W2027107760 @default.
- W2018521326 cites W2030936891 @default.
- W2018521326 cites W2031395064 @default.
- W2018521326 cites W2034068327 @default.
- W2018521326 cites W2035940236 @default.
- W2018521326 cites W2036790472 @default.
- W2018521326 cites W2037784836 @default.
- W2018521326 cites W2040390073 @default.
- W2018521326 cites W2042670971 @default.
- W2018521326 cites W2043119466 @default.
- W2018521326 cites W2043310171 @default.
- W2018521326 cites W2047654966 @default.
- W2018521326 cites W2048524495 @default.
- W2018521326 cites W2057109090 @default.
- W2018521326 cites W2060106830 @default.
- W2018521326 cites W2063871787 @default.
- W2018521326 cites W2065744623 @default.
- W2018521326 cites W2067816052 @default.
- W2018521326 cites W2068223941 @default.
- W2018521326 cites W2073379065 @default.
- W2018521326 cites W2073411176 @default.
- W2018521326 cites W2082049199 @default.
- W2018521326 cites W2088429962 @default.
- W2018521326 cites W2090202623 @default.
- W2018521326 cites W2091430710 @default.
- W2018521326 cites W2094123053 @default.
- W2018521326 cites W2101342709 @default.
- W2018521326 cites W2103975256 @default.
- W2018521326 cites W2106649168 @default.
- W2018521326 cites W2108942037 @default.
- W2018521326 cites W2110295285 @default.
- W2018521326 cites W2119642096 @default.
- W2018521326 cites W2121280491 @default.
- W2018521326 cites W2138168582 @default.
- W2018521326 cites W2147754519 @default.
- W2018521326 cites W2158180922 @default.
- W2018521326 cites W2159688160 @default.
- W2018521326 cites W2162444373 @default.
- W2018521326 cites W2164128408 @default.
- W2018521326 cites W2169430701 @default.
- W2018521326 cites W2314307551 @default.
- W2018521326 cites W2317421803 @default.
- W2018521326 cites W2329313914 @default.
- W2018521326 cites W2491458126 @default.
- W2018521326 cites W2091742349 @default.
- W2018521326 doi "https://doi.org/10.1021/acsami.5b01554" @default.
- W2018521326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25804993" @default.
- W2018521326 hasPublicationYear "2015" @default.
- W2018521326 type Work @default.
- W2018521326 sameAs 2018521326 @default.
- W2018521326 citedByCount "35" @default.
- W2018521326 countsByYear W20185213262015 @default.
- W2018521326 countsByYear W20185213262016 @default.
- W2018521326 countsByYear W20185213262017 @default.
- W2018521326 countsByYear W20185213262018 @default.
- W2018521326 countsByYear W20185213262019 @default.
- W2018521326 countsByYear W20185213262020 @default.
- W2018521326 countsByYear W20185213262021 @default.
- W2018521326 countsByYear W20185213262022 @default.
- W2018521326 countsByYear W20185213262023 @default.
- W2018521326 crossrefType "journal-article" @default.
- W2018521326 hasAuthorship W2018521326A5017800593 @default.
- W2018521326 hasAuthorship W2018521326A5019336117 @default.
- W2018521326 hasAuthorship W2018521326A5021554658 @default.
- W2018521326 hasAuthorship W2018521326A5025653739 @default.