Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018525987> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2018525987 abstract "In the world of recommender systems, it is a common practice to use public available datasets from different application environments (e.g. MovieLens, Book-Crossing, or Each-Movie) in order to evaluate recommendation algorithms. These datasets are used as benchmarks to develop new recommendation algorithms and to compare them to other algorithms in given settings. In this paper, we explore datasets that capture learner interactions with tools and resources. We use the datasets to evaluate and compare the performance of different recommendation algorithms for learning. We present an experimental comparison of the accuracy of several collaborative filtering algorithms applied to these TEL datasets and elaborate on implicit relevance data, such as downloads and tags, that can be used to improve the performance of recommendation algorithms." @default.
- W2018525987 created "2016-06-24" @default.
- W2018525987 creator A5014623307 @default.
- W2018525987 creator A5016802994 @default.
- W2018525987 creator A5027722484 @default.
- W2018525987 creator A5076331387 @default.
- W2018525987 creator A5078874998 @default.
- W2018525987 creator A5079309127 @default.
- W2018525987 date "2011-02-27" @default.
- W2018525987 modified "2023-10-01" @default.
- W2018525987 title "Dataset-driven research for improving recommender systems for learning" @default.
- W2018525987 cites W1495331069 @default.
- W2018525987 cites W1527739013 @default.
- W2018525987 cites W1597675389 @default.
- W2018525987 cites W1598687747 @default.
- W2018525987 cites W1971040550 @default.
- W2018525987 cites W1983768097 @default.
- W2018525987 cites W1999047234 @default.
- W2018525987 cites W2006551346 @default.
- W2018525987 cites W2019878817 @default.
- W2018525987 cites W2042281163 @default.
- W2018525987 cites W2048397389 @default.
- W2018525987 cites W2062491617 @default.
- W2018525987 cites W2088399682 @default.
- W2018525987 cites W2099716451 @default.
- W2018525987 cites W2132226239 @default.
- W2018525987 cites W2162283255 @default.
- W2018525987 cites W2162991380 @default.
- W2018525987 cites W2166041407 @default.
- W2018525987 cites W2171109587 @default.
- W2018525987 doi "https://doi.org/10.1145/2090116.2090122" @default.
- W2018525987 hasPublicationYear "2011" @default.
- W2018525987 type Work @default.
- W2018525987 sameAs 2018525987 @default.
- W2018525987 citedByCount "140" @default.
- W2018525987 countsByYear W20185259872012 @default.
- W2018525987 countsByYear W20185259872013 @default.
- W2018525987 countsByYear W20185259872014 @default.
- W2018525987 countsByYear W20185259872015 @default.
- W2018525987 countsByYear W20185259872016 @default.
- W2018525987 countsByYear W20185259872017 @default.
- W2018525987 countsByYear W20185259872018 @default.
- W2018525987 countsByYear W20185259872019 @default.
- W2018525987 countsByYear W20185259872020 @default.
- W2018525987 countsByYear W20185259872021 @default.
- W2018525987 countsByYear W20185259872022 @default.
- W2018525987 countsByYear W20185259872023 @default.
- W2018525987 crossrefType "proceedings-article" @default.
- W2018525987 hasAuthorship W2018525987A5014623307 @default.
- W2018525987 hasAuthorship W2018525987A5016802994 @default.
- W2018525987 hasAuthorship W2018525987A5027722484 @default.
- W2018525987 hasAuthorship W2018525987A5076331387 @default.
- W2018525987 hasAuthorship W2018525987A5078874998 @default.
- W2018525987 hasAuthorship W2018525987A5079309127 @default.
- W2018525987 hasBestOaLocation W20185259872 @default.
- W2018525987 hasConcept C119857082 @default.
- W2018525987 hasConcept C124101348 @default.
- W2018525987 hasConcept C154945302 @default.
- W2018525987 hasConcept C158154518 @default.
- W2018525987 hasConcept C17744445 @default.
- W2018525987 hasConcept C199539241 @default.
- W2018525987 hasConcept C21569690 @default.
- W2018525987 hasConcept C23123220 @default.
- W2018525987 hasConcept C2776156558 @default.
- W2018525987 hasConcept C41008148 @default.
- W2018525987 hasConcept C557471498 @default.
- W2018525987 hasConceptScore W2018525987C119857082 @default.
- W2018525987 hasConceptScore W2018525987C124101348 @default.
- W2018525987 hasConceptScore W2018525987C154945302 @default.
- W2018525987 hasConceptScore W2018525987C158154518 @default.
- W2018525987 hasConceptScore W2018525987C17744445 @default.
- W2018525987 hasConceptScore W2018525987C199539241 @default.
- W2018525987 hasConceptScore W2018525987C21569690 @default.
- W2018525987 hasConceptScore W2018525987C23123220 @default.
- W2018525987 hasConceptScore W2018525987C2776156558 @default.
- W2018525987 hasConceptScore W2018525987C41008148 @default.
- W2018525987 hasConceptScore W2018525987C557471498 @default.
- W2018525987 hasFunder F4320334960 @default.
- W2018525987 hasLocation W20185259871 @default.
- W2018525987 hasLocation W20185259872 @default.
- W2018525987 hasOpenAccess W2018525987 @default.
- W2018525987 hasPrimaryLocation W20185259871 @default.
- W2018525987 hasRelatedWork W1975077895 @default.
- W2018525987 hasRelatedWork W2075040002 @default.
- W2018525987 hasRelatedWork W2161485269 @default.
- W2018525987 hasRelatedWork W2311446356 @default.
- W2018525987 hasRelatedWork W2365387480 @default.
- W2018525987 hasRelatedWork W2369936857 @default.
- W2018525987 hasRelatedWork W2402445420 @default.
- W2018525987 hasRelatedWork W2534166019 @default.
- W2018525987 hasRelatedWork W4281550308 @default.
- W2018525987 hasRelatedWork W4283711282 @default.
- W2018525987 isParatext "false" @default.
- W2018525987 isRetracted "false" @default.
- W2018525987 magId "2018525987" @default.
- W2018525987 workType "article" @default.