Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018534072> ?p ?o ?g. }
- W2018534072 endingPage "677" @default.
- W2018534072 startingPage "641" @default.
- W2018534072 abstract "Population dynamics with regard to evolution of traits has typically been studied using matrix projection models (MPMs). Recently, to work with continuous traits, integral projection models (IPMs) have been proposed. Imitating the path with MPMs, IPMs are handled first with a fitting stage, then with a projection stage. Fitting these models has so far been done only with individual-level transition data. These data are used to estimate the demographic functions (survival, growth, fecundity) that comprise the kernel of the IPM specification. Then, the estimated kernel is iterated from an initial trait distribution to project steady state population behavior under this kernel. When trait distributions are observed over time, such an approach does not align projected distributions with these observed temporal benchmarks. The contribution here, focusing on size distributions, is to address this issue. Our concern is that the above approach introduces an inherent mismatch in scales. The redistribution kernel in the IPM proposes a mechanistic description of population level redistribution. A kernel of the same functional form, fitted to data at the individual level, would provide a mechanistic model for individual-level processes. Resulting parameter estimates and the associated estimated kernel are at the wrong scale and do not allow population-level interpretation. Our approach views the observed size distribution at a given time as a point pattern over a bounded interval. We build a three-stage hierarchical model to infer about the dynamic intensities used to explain the observed point patterns. This model is driven by a latent deterministic IPM and we introduce uncertainty by having the operating IPM vary around this deterministic specification. Further uncertainty arises in the realization of the point pattern given the operating IPM. Fitted within a Bayesian framework, such modeling enables full inference about all features of the model. Such dynamic modeling, optimized by fitting to data observed over time, is better suited to projection. Exact Bayesian model fitting is very computationally challenging; we offer approximate strategies to facilitate computation. We illustrate with simulated data examples as well as well as a set of annual tree growth data from Duke Forest in North Carolina. A further example shows the benefit of our approach, in terms of projection, compared with the foregoing individual level fitting." @default.
- W2018534072 created "2016-06-24" @default.
- W2018534072 creator A5042522667 @default.
- W2018534072 creator A5062778775 @default.
- W2018534072 creator A5090220956 @default.
- W2018534072 date "2012-12-01" @default.
- W2018534072 modified "2023-10-11" @default.
- W2018534072 title "Inference for Size Demography From Point Pattern Data Using Integral Projection Models" @default.
- W2018534072 cites W1492085720 @default.
- W2018534072 cites W1525815710 @default.
- W2018534072 cites W1964883106 @default.
- W2018534072 cites W1971842859 @default.
- W2018534072 cites W1981084494 @default.
- W2018534072 cites W1981900201 @default.
- W2018534072 cites W1988718903 @default.
- W2018534072 cites W2003366965 @default.
- W2018534072 cites W2005850290 @default.
- W2018534072 cites W2008648710 @default.
- W2018534072 cites W2018304737 @default.
- W2018534072 cites W2031457307 @default.
- W2018534072 cites W2040635790 @default.
- W2018534072 cites W2048443287 @default.
- W2018534072 cites W2058469414 @default.
- W2018534072 cites W2070044130 @default.
- W2018534072 cites W2075060009 @default.
- W2018534072 cites W2099337390 @default.
- W2018534072 cites W2100891518 @default.
- W2018534072 cites W2111111567 @default.
- W2018534072 cites W2112771779 @default.
- W2018534072 cites W2114843949 @default.
- W2018534072 cites W2115147762 @default.
- W2018534072 cites W2123805852 @default.
- W2018534072 cites W2129988505 @default.
- W2018534072 cites W2145058519 @default.
- W2018534072 cites W2159989692 @default.
- W2018534072 doi "https://doi.org/10.1007/s13253-012-0123-9" @default.
- W2018534072 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3819200" @default.
- W2018534072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24223480" @default.
- W2018534072 hasPublicationYear "2012" @default.
- W2018534072 type Work @default.
- W2018534072 sameAs 2018534072 @default.
- W2018534072 citedByCount "23" @default.
- W2018534072 countsByYear W20185340722013 @default.
- W2018534072 countsByYear W20185340722014 @default.
- W2018534072 countsByYear W20185340722016 @default.
- W2018534072 countsByYear W20185340722017 @default.
- W2018534072 countsByYear W20185340722018 @default.
- W2018534072 countsByYear W20185340722019 @default.
- W2018534072 countsByYear W20185340722022 @default.
- W2018534072 countsByYear W20185340722023 @default.
- W2018534072 crossrefType "journal-article" @default.
- W2018534072 hasAuthorship W2018534072A5042522667 @default.
- W2018534072 hasAuthorship W2018534072A5062778775 @default.
- W2018534072 hasAuthorship W2018534072A5090220956 @default.
- W2018534072 hasBestOaLocation W20185340722 @default.
- W2018534072 hasConcept C105795698 @default.
- W2018534072 hasConcept C11413529 @default.
- W2018534072 hasConcept C114614502 @default.
- W2018534072 hasConcept C144024400 @default.
- W2018534072 hasConcept C149782125 @default.
- W2018534072 hasConcept C149923435 @default.
- W2018534072 hasConcept C154945302 @default.
- W2018534072 hasConcept C2776214188 @default.
- W2018534072 hasConcept C2908647359 @default.
- W2018534072 hasConcept C33923547 @default.
- W2018534072 hasConcept C41008148 @default.
- W2018534072 hasConcept C57493831 @default.
- W2018534072 hasConcept C74193536 @default.
- W2018534072 hasConceptScore W2018534072C105795698 @default.
- W2018534072 hasConceptScore W2018534072C11413529 @default.
- W2018534072 hasConceptScore W2018534072C114614502 @default.
- W2018534072 hasConceptScore W2018534072C144024400 @default.
- W2018534072 hasConceptScore W2018534072C149782125 @default.
- W2018534072 hasConceptScore W2018534072C149923435 @default.
- W2018534072 hasConceptScore W2018534072C154945302 @default.
- W2018534072 hasConceptScore W2018534072C2776214188 @default.
- W2018534072 hasConceptScore W2018534072C2908647359 @default.
- W2018534072 hasConceptScore W2018534072C33923547 @default.
- W2018534072 hasConceptScore W2018534072C41008148 @default.
- W2018534072 hasConceptScore W2018534072C57493831 @default.
- W2018534072 hasConceptScore W2018534072C74193536 @default.
- W2018534072 hasIssue "4" @default.
- W2018534072 hasLocation W20185340721 @default.
- W2018534072 hasLocation W20185340722 @default.
- W2018534072 hasLocation W20185340723 @default.
- W2018534072 hasLocation W20185340724 @default.
- W2018534072 hasOpenAccess W2018534072 @default.
- W2018534072 hasPrimaryLocation W20185340721 @default.
- W2018534072 hasRelatedWork W1539672458 @default.
- W2018534072 hasRelatedWork W1970601671 @default.
- W2018534072 hasRelatedWork W1974777642 @default.
- W2018534072 hasRelatedWork W2002717149 @default.
- W2018534072 hasRelatedWork W2048963143 @default.
- W2018534072 hasRelatedWork W2119158312 @default.
- W2018534072 hasRelatedWork W2370340664 @default.
- W2018534072 hasRelatedWork W2467518695 @default.
- W2018534072 hasRelatedWork W2552050053 @default.
- W2018534072 hasRelatedWork W2783137483 @default.