Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018556875> ?p ?o ?g. }
- W2018556875 abstract "The quantization of the electromagnetic field in a three-dimensional inhomogeneous dielectric medium with losses is carried out in the framework of a damped-polariton model with an arbitrary spatial dependence of its parameters. The equations of motion for the canonical variables are solved explicitly by means of Laplace transformations for both positive and negative time. The dielectric susceptibility and the quantum noise-current density are identified in terms of the dynamical variables and parameters of the model. The operators that diagonalize the Hamiltonian are found as linear combinations of the canonical variables, with coefficients depending on the electric susceptibility and the dielectric Green function. The complete time dependence of the electromagnetic field and of the dielectric polarization is determined. Our results provide a microscopic justification of the phenomenological quantization scheme for the electromagnetic field in inhomogeneous dielectrics." @default.
- W2018556875 created "2016-06-24" @default.
- W2018556875 creator A5052668646 @default.
- W2018556875 creator A5062921530 @default.
- W2018556875 date "2004-07-30" @default.
- W2018556875 modified "2023-09-23" @default.
- W2018556875 title "Field quantization in inhomogeneous absorptive dielectrics" @default.
- W2018556875 cites W1529309019 @default.
- W2018556875 cites W1967164909 @default.
- W2018556875 cites W1973555703 @default.
- W2018556875 cites W1993943278 @default.
- W2018556875 cites W2001241940 @default.
- W2018556875 cites W2007101066 @default.
- W2018556875 cites W2010203617 @default.
- W2018556875 cites W2012959467 @default.
- W2018556875 cites W2017630019 @default.
- W2018556875 cites W2019054568 @default.
- W2018556875 cites W2021485727 @default.
- W2018556875 cites W2024796832 @default.
- W2018556875 cites W2033301572 @default.
- W2018556875 cites W2041921807 @default.
- W2018556875 cites W2043127959 @default.
- W2018556875 cites W2051312126 @default.
- W2018556875 cites W2051869036 @default.
- W2018556875 cites W2057284623 @default.
- W2018556875 cites W2057831166 @default.
- W2018556875 cites W2059024422 @default.
- W2018556875 cites W2061250119 @default.
- W2018556875 cites W2061952983 @default.
- W2018556875 cites W2063002395 @default.
- W2018556875 cites W2067823860 @default.
- W2018556875 cites W2069302298 @default.
- W2018556875 cites W2069828439 @default.
- W2018556875 cites W2072549768 @default.
- W2018556875 cites W2073757213 @default.
- W2018556875 cites W2078314362 @default.
- W2018556875 cites W2085355132 @default.
- W2018556875 cites W2091074536 @default.
- W2018556875 cites W2094113609 @default.
- W2018556875 cites W2133421493 @default.
- W2018556875 cites W2149865930 @default.
- W2018556875 cites W2156823914 @default.
- W2018556875 cites W2222517232 @default.
- W2018556875 cites W2597971488 @default.
- W2018556875 cites W2962755075 @default.
- W2018556875 cites W4235972177 @default.
- W2018556875 doi "https://doi.org/10.1103/physreva.70.013816" @default.
- W2018556875 hasPublicationYear "2004" @default.
- W2018556875 type Work @default.
- W2018556875 sameAs 2018556875 @default.
- W2018556875 citedByCount "116" @default.
- W2018556875 countsByYear W20185568752012 @default.
- W2018556875 countsByYear W20185568752013 @default.
- W2018556875 countsByYear W20185568752014 @default.
- W2018556875 countsByYear W20185568752015 @default.
- W2018556875 countsByYear W20185568752016 @default.
- W2018556875 countsByYear W20185568752017 @default.
- W2018556875 countsByYear W20185568752018 @default.
- W2018556875 countsByYear W20185568752019 @default.
- W2018556875 countsByYear W20185568752020 @default.
- W2018556875 countsByYear W20185568752021 @default.
- W2018556875 countsByYear W20185568752022 @default.
- W2018556875 countsByYear W20185568752023 @default.
- W2018556875 crossrefType "journal-article" @default.
- W2018556875 hasAuthorship W2018556875A5052668646 @default.
- W2018556875 hasAuthorship W2018556875A5062921530 @default.
- W2018556875 hasBestOaLocation W20185568752 @default.
- W2018556875 hasConcept C108568745 @default.
- W2018556875 hasConcept C121332964 @default.
- W2018556875 hasConcept C126255220 @default.
- W2018556875 hasConcept C130787639 @default.
- W2018556875 hasConcept C133386390 @default.
- W2018556875 hasConcept C134306372 @default.
- W2018556875 hasConcept C147789679 @default.
- W2018556875 hasConcept C158913796 @default.
- W2018556875 hasConcept C185592680 @default.
- W2018556875 hasConcept C205049153 @default.
- W2018556875 hasConcept C26873012 @default.
- W2018556875 hasConcept C28843909 @default.
- W2018556875 hasConcept C28855332 @default.
- W2018556875 hasConcept C31972630 @default.
- W2018556875 hasConcept C33923547 @default.
- W2018556875 hasConcept C41008148 @default.
- W2018556875 hasConcept C62520636 @default.
- W2018556875 hasConcept C84114770 @default.
- W2018556875 hasConcept C97937538 @default.
- W2018556875 hasConceptScore W2018556875C108568745 @default.
- W2018556875 hasConceptScore W2018556875C121332964 @default.
- W2018556875 hasConceptScore W2018556875C126255220 @default.
- W2018556875 hasConceptScore W2018556875C130787639 @default.
- W2018556875 hasConceptScore W2018556875C133386390 @default.
- W2018556875 hasConceptScore W2018556875C134306372 @default.
- W2018556875 hasConceptScore W2018556875C147789679 @default.
- W2018556875 hasConceptScore W2018556875C158913796 @default.
- W2018556875 hasConceptScore W2018556875C185592680 @default.
- W2018556875 hasConceptScore W2018556875C205049153 @default.
- W2018556875 hasConceptScore W2018556875C26873012 @default.
- W2018556875 hasConceptScore W2018556875C28843909 @default.
- W2018556875 hasConceptScore W2018556875C28855332 @default.
- W2018556875 hasConceptScore W2018556875C31972630 @default.