Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018570075> ?p ?o ?g. }
- W2018570075 endingPage "777" @default.
- W2018570075 startingPage "759" @default.
- W2018570075 abstract "The problem of calculating the entropy of formation of a point defect in an ionic crystal is reexamined in some detail. We use two methods of calculation, which we term the embedded-crystallite and the Green-function methods. In both methods, the crystal is divided into an inner region, which contains the defect and a set of its neighbors, and an outer region. In the embedded-crystallite method, the entropy is calculated directly from the determinants of the force-constant matrices for perfect and defective crystals, restricted to the defect region. The Green-function method, which is expected to be more accurate, exploits a reformulation of the entropy expression in terms of the Green functions of the perfect crystal and the change of the force constants in the defect region. The principal feature of our calculations is the examination, for the first time in ionic crystals, of the convergence of the calculated entropy as the size of the defect region is increased. Associated problems, such as the correct inclusion of the long-range Coulomb contributions and the accuracy of the Green functions, have also been addressed. The model numerical calculations which we present are for the case of Frenkel (vacancy and interstitial) defects in Ca${mathrm{F}}_{2}$. The majority of the calculations have been performed with the use of a rigid-ion potential, which allows a simpler discussion of the technical problems, but we have also investigated the effect on the results of using a realistic shell model. We show that the convergence of the results is strongly affected by previously unrecognized fluctuation effects coming from the boundary of the defect region; these effects are specific to ionic crystals. It is demonstrated that the boundary effects can be eliminated with the use of a simple substraction technique, and that the resulting entropy values can be extrapolated to infinite region size with an uncertainty of no more than a few tenths of Boltzmann's constant. It is pointed out that in a finite crystal there is a contribution to the entropy of charged defects from the structure of the physical surface; this contribution cancels out, however, for neutral sets of defects. We discuss previous work on this problem in the light of our findings." @default.
- W2018570075 created "2016-06-24" @default.
- W2018570075 creator A5045382498 @default.
- W2018570075 creator A5087852494 @default.
- W2018570075 date "1983-07-15" @default.
- W2018570075 modified "2023-10-03" @default.
- W2018570075 title "Entropy of a point defect in an ionic crystal" @default.
- W2018570075 cites W1554449373 @default.
- W2018570075 cites W1971689877 @default.
- W2018570075 cites W1973742791 @default.
- W2018570075 cites W1975702864 @default.
- W2018570075 cites W1991550351 @default.
- W2018570075 cites W1991923561 @default.
- W2018570075 cites W2001676859 @default.
- W2018570075 cites W2003428286 @default.
- W2018570075 cites W2006206509 @default.
- W2018570075 cites W2009406230 @default.
- W2018570075 cites W2024328884 @default.
- W2018570075 cites W2027694533 @default.
- W2018570075 cites W2036472777 @default.
- W2018570075 cites W2040248334 @default.
- W2018570075 cites W2043033779 @default.
- W2018570075 cites W2049982902 @default.
- W2018570075 cites W2051286464 @default.
- W2018570075 cites W2068712606 @default.
- W2018570075 cites W2069300787 @default.
- W2018570075 cites W2082151940 @default.
- W2018570075 cites W2085282221 @default.
- W2018570075 cites W2085430435 @default.
- W2018570075 cites W2113766469 @default.
- W2018570075 cites W2115864365 @default.
- W2018570075 doi "https://doi.org/10.1103/physrevb.28.759" @default.
- W2018570075 hasPublicationYear "1983" @default.
- W2018570075 type Work @default.
- W2018570075 sameAs 2018570075 @default.
- W2018570075 citedByCount "68" @default.
- W2018570075 countsByYear W20185700752013 @default.
- W2018570075 countsByYear W20185700752014 @default.
- W2018570075 countsByYear W20185700752015 @default.
- W2018570075 countsByYear W20185700752018 @default.
- W2018570075 countsByYear W20185700752019 @default.
- W2018570075 countsByYear W20185700752020 @default.
- W2018570075 countsByYear W20185700752022 @default.
- W2018570075 countsByYear W20185700752023 @default.
- W2018570075 crossrefType "journal-article" @default.
- W2018570075 hasAuthorship W2018570075A5045382498 @default.
- W2018570075 hasAuthorship W2018570075A5087852494 @default.
- W2018570075 hasConcept C106301342 @default.
- W2018570075 hasConcept C114221277 @default.
- W2018570075 hasConcept C121332964 @default.
- W2018570075 hasConcept C121864883 @default.
- W2018570075 hasConcept C124589349 @default.
- W2018570075 hasConcept C137637335 @default.
- W2018570075 hasConcept C145148216 @default.
- W2018570075 hasConcept C164675345 @default.
- W2018570075 hasConcept C191897082 @default.
- W2018570075 hasConcept C192562407 @default.
- W2018570075 hasConcept C199360897 @default.
- W2018570075 hasConcept C2182769 @default.
- W2018570075 hasConcept C26873012 @default.
- W2018570075 hasConcept C2781285689 @default.
- W2018570075 hasConcept C2993376436 @default.
- W2018570075 hasConcept C41008148 @default.
- W2018570075 hasConcept C62520636 @default.
- W2018570075 hasConcept C97355855 @default.
- W2018570075 hasConceptScore W2018570075C106301342 @default.
- W2018570075 hasConceptScore W2018570075C114221277 @default.
- W2018570075 hasConceptScore W2018570075C121332964 @default.
- W2018570075 hasConceptScore W2018570075C121864883 @default.
- W2018570075 hasConceptScore W2018570075C124589349 @default.
- W2018570075 hasConceptScore W2018570075C137637335 @default.
- W2018570075 hasConceptScore W2018570075C145148216 @default.
- W2018570075 hasConceptScore W2018570075C164675345 @default.
- W2018570075 hasConceptScore W2018570075C191897082 @default.
- W2018570075 hasConceptScore W2018570075C192562407 @default.
- W2018570075 hasConceptScore W2018570075C199360897 @default.
- W2018570075 hasConceptScore W2018570075C2182769 @default.
- W2018570075 hasConceptScore W2018570075C26873012 @default.
- W2018570075 hasConceptScore W2018570075C2781285689 @default.
- W2018570075 hasConceptScore W2018570075C2993376436 @default.
- W2018570075 hasConceptScore W2018570075C41008148 @default.
- W2018570075 hasConceptScore W2018570075C62520636 @default.
- W2018570075 hasConceptScore W2018570075C97355855 @default.
- W2018570075 hasIssue "2" @default.
- W2018570075 hasLocation W20185700751 @default.
- W2018570075 hasOpenAccess W2018570075 @default.
- W2018570075 hasPrimaryLocation W20185700751 @default.
- W2018570075 hasRelatedWork W166047386 @default.
- W2018570075 hasRelatedWork W1995904406 @default.
- W2018570075 hasRelatedWork W1997538185 @default.
- W2018570075 hasRelatedWork W2005069754 @default.
- W2018570075 hasRelatedWork W2005255308 @default.
- W2018570075 hasRelatedWork W2008562407 @default.
- W2018570075 hasRelatedWork W2024080077 @default.
- W2018570075 hasRelatedWork W2058729386 @default.
- W2018570075 hasRelatedWork W2371393391 @default.
- W2018570075 hasRelatedWork W2792625207 @default.
- W2018570075 hasVolume "28" @default.