Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018575951> ?p ?o ?g. }
- W2018575951 endingPage "2674" @default.
- W2018575951 startingPage "2665" @default.
- W2018575951 abstract "This paper evaluates a set of computational algorithms for the automatic estimation of human postures and gait properties from signals provided by an inertial body sensor. The use of a single sensor device imposes limitations for the automatic estimation of relevant properties, like step length and gait velocity, as well as for the detection of standard postures like sitting or standing. Moreover, the exact location and orientation of the sensor are also a common restriction that is relaxed in this study. Based on accelerations provided by a sensor, known as the ‘9×2’, three approaches are presented extracting kinematic information from the user motion and posture. First, a two-phases procedure implementing feature extraction and support vector machine based classification for daily living activity monitoring is presented. Second, support vector regression is applied on heuristically extracted features for the automatic computation of spatiotemporal properties during gait. Finally, sensor information is interpreted as an observation of a particular trajectory of the human gait dynamical system, from which a reconstruction space is obtained, and then transformed using standard principal components analysis, finally support vector regression is used for prediction. Daily living activities are detected and spatiotemporal parameters of human gait are estimated using methods sharing a common structure based on feature extraction and kernel methods. The approaches presented are susceptible to be used for medical purposes." @default.
- W2018575951 created "2016-06-24" @default.
- W2018575951 creator A5013398412 @default.
- W2018575951 creator A5037993460 @default.
- W2018575951 creator A5043542039 @default.
- W2018575951 creator A5075968312 @default.
- W2018575951 creator A5090952399 @default.
- W2018575951 date "2011-09-01" @default.
- W2018575951 modified "2023-10-17" @default.
- W2018575951 title "Analyzing human gait and posture by combining feature selection and kernel methods" @default.
- W2018575951 cites W1549386224 @default.
- W2018575951 cites W1964357740 @default.
- W2018575951 cites W1976294082 @default.
- W2018575951 cites W1979626666 @default.
- W2018575951 cites W1993761347 @default.
- W2018575951 cites W2026759935 @default.
- W2018575951 cites W2030254544 @default.
- W2018575951 cites W2037819518 @default.
- W2018575951 cites W2037825856 @default.
- W2018575951 cites W2052627846 @default.
- W2018575951 cites W2072178117 @default.
- W2018575951 cites W2077772005 @default.
- W2018575951 cites W2081681829 @default.
- W2018575951 cites W2082699938 @default.
- W2018575951 cites W2084997069 @default.
- W2018575951 cites W2090264947 @default.
- W2018575951 cites W2103279031 @default.
- W2018575951 cites W2104973122 @default.
- W2018575951 cites W2108710077 @default.
- W2018575951 cites W2116178519 @default.
- W2018575951 cites W2118630306 @default.
- W2018575951 cites W2119479037 @default.
- W2018575951 cites W2120785797 @default.
- W2018575951 cites W2140637265 @default.
- W2018575951 cites W2155952367 @default.
- W2018575951 cites W2162908184 @default.
- W2018575951 cites W2166771166 @default.
- W2018575951 cites W2548137270 @default.
- W2018575951 doi "https://doi.org/10.1016/j.neucom.2011.03.028" @default.
- W2018575951 hasPublicationYear "2011" @default.
- W2018575951 type Work @default.
- W2018575951 sameAs 2018575951 @default.
- W2018575951 citedByCount "18" @default.
- W2018575951 countsByYear W20185759512012 @default.
- W2018575951 countsByYear W20185759512013 @default.
- W2018575951 countsByYear W20185759512015 @default.
- W2018575951 countsByYear W20185759512016 @default.
- W2018575951 countsByYear W20185759512017 @default.
- W2018575951 countsByYear W20185759512018 @default.
- W2018575951 countsByYear W20185759512019 @default.
- W2018575951 countsByYear W20185759512022 @default.
- W2018575951 countsByYear W20185759512023 @default.
- W2018575951 crossrefType "journal-article" @default.
- W2018575951 hasAuthorship W2018575951A5013398412 @default.
- W2018575951 hasAuthorship W2018575951A5037993460 @default.
- W2018575951 hasAuthorship W2018575951A5043542039 @default.
- W2018575951 hasAuthorship W2018575951A5075968312 @default.
- W2018575951 hasAuthorship W2018575951A5090952399 @default.
- W2018575951 hasBestOaLocation W20185759512 @default.
- W2018575951 hasConcept C114614502 @default.
- W2018575951 hasConcept C121332964 @default.
- W2018575951 hasConcept C12267149 @default.
- W2018575951 hasConcept C1276947 @default.
- W2018575951 hasConcept C13662910 @default.
- W2018575951 hasConcept C138885662 @default.
- W2018575951 hasConcept C148483581 @default.
- W2018575951 hasConcept C151800584 @default.
- W2018575951 hasConcept C153180895 @default.
- W2018575951 hasConcept C154945302 @default.
- W2018575951 hasConcept C16345878 @default.
- W2018575951 hasConcept C2524010 @default.
- W2018575951 hasConcept C2776401178 @default.
- W2018575951 hasConcept C31972630 @default.
- W2018575951 hasConcept C33923547 @default.
- W2018575951 hasConcept C39920418 @default.
- W2018575951 hasConcept C41008148 @default.
- W2018575951 hasConcept C41895202 @default.
- W2018575951 hasConcept C42407357 @default.
- W2018575951 hasConcept C52622490 @default.
- W2018575951 hasConcept C74193536 @default.
- W2018575951 hasConcept C74650414 @default.
- W2018575951 hasConcept C83665646 @default.
- W2018575951 hasConcept C86803240 @default.
- W2018575951 hasConceptScore W2018575951C114614502 @default.
- W2018575951 hasConceptScore W2018575951C121332964 @default.
- W2018575951 hasConceptScore W2018575951C12267149 @default.
- W2018575951 hasConceptScore W2018575951C1276947 @default.
- W2018575951 hasConceptScore W2018575951C13662910 @default.
- W2018575951 hasConceptScore W2018575951C138885662 @default.
- W2018575951 hasConceptScore W2018575951C148483581 @default.
- W2018575951 hasConceptScore W2018575951C151800584 @default.
- W2018575951 hasConceptScore W2018575951C153180895 @default.
- W2018575951 hasConceptScore W2018575951C154945302 @default.
- W2018575951 hasConceptScore W2018575951C16345878 @default.
- W2018575951 hasConceptScore W2018575951C2524010 @default.
- W2018575951 hasConceptScore W2018575951C2776401178 @default.
- W2018575951 hasConceptScore W2018575951C31972630 @default.
- W2018575951 hasConceptScore W2018575951C33923547 @default.