Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018623770> ?p ?o ?g. }
- W2018623770 abstract "Abstract Few exact solutions for the response of stochastic dynamical systems are available. Thus, the methods of the equivalent linearization and of the equivalent nonlinear system are often used. While the former yields a Gaussian response to a Gaussian excitation, the latter gives a non-Gaussian response, which is nearer to the exact unknown response of a nonlinear system. Among the equivalent nonlinear system methods the one based on the replacement of the actual dynamic system by means of a potential system is promising, Cavaleri and Di Paola (2000) [41] , as it leads to a fixed procedure differently from other methods. The procedure is developed under the assumption that the ratio of the moments E [ Λ j X 2 ] and E [ Λ j + 1 ] is a constant α not depending on j , Λ being the mechanical energy of the oscillator and X its velocity. This relationship is demonstrated only for the so called Robert’s oscillator, that is an oscillator with restoring force g ( X ) = ω 0 sgn ( X ) ⋅ | X | ν , but in the above mentioned reference it is argued that it is valid in general. In this paper, numerical analyses are presented to ascertain its validity in order to apply the method to systems with different restoring forces. It is found that in some cases it is true, some others are doubtful, while there are cases in which α clearly depends on j . The effects of considering α constant when it is not are ascertained for a Duffing oscillator with linear plus cubic damping." @default.
- W2018623770 created "2016-06-24" @default.
- W2018623770 creator A5060285094 @default.
- W2018623770 date "2010-01-01" @default.
- W2018623770 modified "2023-09-25" @default.
- W2018623770 title "Equivalent nonlinear potential systems: Review of previous assumptions" @default.
- W2018623770 cites W1536233603 @default.
- W2018623770 cites W1595848081 @default.
- W2018623770 cites W1964112831 @default.
- W2018623770 cites W1966800299 @default.
- W2018623770 cites W1967107686 @default.
- W2018623770 cites W1973196169 @default.
- W2018623770 cites W1973292177 @default.
- W2018623770 cites W1976693580 @default.
- W2018623770 cites W1976953587 @default.
- W2018623770 cites W1977795131 @default.
- W2018623770 cites W1977868622 @default.
- W2018623770 cites W1979761856 @default.
- W2018623770 cites W1980661057 @default.
- W2018623770 cites W1982282938 @default.
- W2018623770 cites W1983617554 @default.
- W2018623770 cites W1985449964 @default.
- W2018623770 cites W1985745141 @default.
- W2018623770 cites W1985926886 @default.
- W2018623770 cites W1994260998 @default.
- W2018623770 cites W1997766962 @default.
- W2018623770 cites W1998455280 @default.
- W2018623770 cites W2007287229 @default.
- W2018623770 cites W2007700189 @default.
- W2018623770 cites W2007765753 @default.
- W2018623770 cites W2009405201 @default.
- W2018623770 cites W2010762131 @default.
- W2018623770 cites W2011718174 @default.
- W2018623770 cites W2012548929 @default.
- W2018623770 cites W2015954133 @default.
- W2018623770 cites W2016516344 @default.
- W2018623770 cites W2016924369 @default.
- W2018623770 cites W2017248722 @default.
- W2018623770 cites W2023203003 @default.
- W2018623770 cites W2028907321 @default.
- W2018623770 cites W2034685636 @default.
- W2018623770 cites W2035934078 @default.
- W2018623770 cites W2040574767 @default.
- W2018623770 cites W2044145021 @default.
- W2018623770 cites W2045330799 @default.
- W2018623770 cites W2048407829 @default.
- W2018623770 cites W2048609796 @default.
- W2018623770 cites W2049942084 @default.
- W2018623770 cites W2053930164 @default.
- W2018623770 cites W2054187127 @default.
- W2018623770 cites W2056907272 @default.
- W2018623770 cites W2060659372 @default.
- W2018623770 cites W2061328989 @default.
- W2018623770 cites W2062938016 @default.
- W2018623770 cites W2065653164 @default.
- W2018623770 cites W2067081139 @default.
- W2018623770 cites W2067896713 @default.
- W2018623770 cites W2071991283 @default.
- W2018623770 cites W2074043910 @default.
- W2018623770 cites W2080174523 @default.
- W2018623770 cites W2083157765 @default.
- W2018623770 cites W2083462577 @default.
- W2018623770 cites W2083856894 @default.
- W2018623770 cites W2085128295 @default.
- W2018623770 cites W2089172015 @default.
- W2018623770 cites W2146385496 @default.
- W2018623770 cites W2317069690 @default.
- W2018623770 cites W564154967 @default.
- W2018623770 cites W593463051 @default.
- W2018623770 cites W1979584195 @default.
- W2018623770 doi "https://doi.org/10.1016/j.probengmech.2009.08.008" @default.
- W2018623770 hasPublicationYear "2010" @default.
- W2018623770 type Work @default.
- W2018623770 sameAs 2018623770 @default.
- W2018623770 citedByCount "3" @default.
- W2018623770 countsByYear W20186237702012 @default.
- W2018623770 countsByYear W20186237702014 @default.
- W2018623770 crossrefType "journal-article" @default.
- W2018623770 hasAuthorship W2018623770A5060285094 @default.
- W2018623770 hasConcept C11210021 @default.
- W2018623770 hasConcept C121332964 @default.
- W2018623770 hasConcept C121864883 @default.
- W2018623770 hasConcept C132323500 @default.
- W2018623770 hasConcept C134306372 @default.
- W2018623770 hasConcept C154945302 @default.
- W2018623770 hasConcept C158622935 @default.
- W2018623770 hasConcept C163716315 @default.
- W2018623770 hasConcept C175853643 @default.
- W2018623770 hasConcept C199360897 @default.
- W2018623770 hasConcept C2775924081 @default.
- W2018623770 hasConcept C2777027219 @default.
- W2018623770 hasConcept C28826006 @default.
- W2018623770 hasConcept C33923547 @default.
- W2018623770 hasConcept C41008148 @default.
- W2018623770 hasConcept C47446073 @default.
- W2018623770 hasConcept C62520636 @default.
- W2018623770 hasConcept C74650414 @default.
- W2018623770 hasConceptScore W2018623770C11210021 @default.
- W2018623770 hasConceptScore W2018623770C121332964 @default.
- W2018623770 hasConceptScore W2018623770C121864883 @default.