Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018631337> ?p ?o ?g. }
- W2018631337 endingPage "353" @default.
- W2018631337 startingPage "333" @default.
- W2018631337 abstract "Abstract In this study we aimed to combine knowledge of the ecophysiology and genetics of European beech to assess the potential of this species to adapt to environmental change. Therefore, we performed field and experimental studies on the genetic and ecophysiological functioning of beech. This information was integrated through a coupled genetic–ecophysiological model for individual trees that was parameterized with information derived from our own studies or from the literature. Using the model, we evaluated the adaptive response of beech stands in two ways: firstly, through sensitivity analyses (of initial genetic diversity, pollen dispersal distance, heritability of selected phenotypic traits, and forest management, representing disturbances) and secondly, through the evaluation of the responses of phenotypic traits and their genetic diversity to four management regimes applied to 10 study plots distributed over Western Europe. The model results indicate that the interval between recruitment events strongly affects the rate of adaptive response, because selection is most severe during the early stages of forest development. Forest management regimes largely determine recruitment intervals and thereby the potential for adaptive responses. Forest management regimes also determine the number of mother trees that contribute to the next generation and thereby the genetic variation that is maintained. Consequently, undisturbed forests maintain the largest amount of genetic variation, as recruitment intervals approach the longevity of trees and many mother trees contribute to the next generation. However, undisturbed forests have the slowest adaptive response, for the same reasons. Gene flow through pollen dispersal may compensate for the loss in genetic diversity brought about by selection. The sensitivity analysis showed that the total genetic diversity of a 2 ha stand is not affected by gene flow if the pollen distance distribution is varied from highly left-skewed to almost flat. However, a stand with a prevailing short-distance gene flow has a more pronounced spatial genetic structure than stands with equal short- and long-distance gene flows. The build-up of a spatial genetic structure is also strongly determined by the recruitment interval. Overall, the modelling results indicate that European beech has high adaptive potential to environmental change if recruitment intervals are short and many mother trees contribute to the next generation. The findings have two implications for modelling studies on the impacts of climate change on forests. Firstly: it cannot be taken for granted that parameter values remain constant over a time horizon of even a few generations – this is particularly important for threshold values subject to strong selection, like budburst, frost hardiness, drought tolerance, as used in species area models. Secondly: forest management should be taken into account in future assessments, as management affects the rate of adaptive response and thereby the response on trees and forests to environmental change, and because few forests are unmanaged. We conclude that a coupled ecophysiological and quantitative genetic tree model is a useful tool for such studies." @default.
- W2018631337 created "2016-06-24" @default.
- W2018631337 creator A5020926162 @default.
- W2018631337 creator A5021184273 @default.
- W2018631337 creator A5024715451 @default.
- W2018631337 creator A5025450683 @default.
- W2018631337 creator A5026465942 @default.
- W2018631337 creator A5030254981 @default.
- W2018631337 creator A5030430620 @default.
- W2018631337 creator A5043854217 @default.
- W2018631337 creator A5046093358 @default.
- W2018631337 creator A5046401412 @default.
- W2018631337 creator A5090352530 @default.
- W2018631337 date "2008-09-01" @default.
- W2018631337 modified "2023-09-26" @default.
- W2018631337 title "Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European beech" @default.
- W2018631337 cites W1857772019 @default.
- W2018631337 cites W1965154346 @default.
- W2018631337 cites W1966347306 @default.
- W2018631337 cites W1967161447 @default.
- W2018631337 cites W1977204178 @default.
- W2018631337 cites W1978701687 @default.
- W2018631337 cites W1982128021 @default.
- W2018631337 cites W1988549828 @default.
- W2018631337 cites W1993815759 @default.
- W2018631337 cites W1997477282 @default.
- W2018631337 cites W2000163080 @default.
- W2018631337 cites W2004526466 @default.
- W2018631337 cites W2009662310 @default.
- W2018631337 cites W2010903333 @default.
- W2018631337 cites W2012950077 @default.
- W2018631337 cites W2031925862 @default.
- W2018631337 cites W2043256210 @default.
- W2018631337 cites W2044544850 @default.
- W2018631337 cites W2047753483 @default.
- W2018631337 cites W2048810176 @default.
- W2018631337 cites W2051530016 @default.
- W2018631337 cites W2055674417 @default.
- W2018631337 cites W2056640260 @default.
- W2018631337 cites W2057831407 @default.
- W2018631337 cites W2060756933 @default.
- W2018631337 cites W2060793626 @default.
- W2018631337 cites W2072214908 @default.
- W2018631337 cites W2076427419 @default.
- W2018631337 cites W2082443184 @default.
- W2018631337 cites W2082610597 @default.
- W2018631337 cites W2086550952 @default.
- W2018631337 cites W2088388939 @default.
- W2018631337 cites W2094505581 @default.
- W2018631337 cites W2098088705 @default.
- W2018631337 cites W2099433852 @default.
- W2018631337 cites W2102352162 @default.
- W2018631337 cites W2109885778 @default.
- W2018631337 cites W2121955404 @default.
- W2018631337 cites W2124631232 @default.
- W2018631337 cites W2124965247 @default.
- W2018631337 cites W2129893292 @default.
- W2018631337 cites W2131493566 @default.
- W2018631337 cites W2139857790 @default.
- W2018631337 cites W2144777247 @default.
- W2018631337 cites W2148536803 @default.
- W2018631337 cites W2151381824 @default.
- W2018631337 cites W2152114451 @default.
- W2018631337 cites W2163782588 @default.
- W2018631337 cites W2164047916 @default.
- W2018631337 cites W2167864955 @default.
- W2018631337 cites W2168213791 @default.
- W2018631337 cites W2168416767 @default.
- W2018631337 cites W2267714437 @default.
- W2018631337 cites W2313176929 @default.
- W2018631337 cites W2329036952 @default.
- W2018631337 cites W2332647412 @default.
- W2018631337 cites W2334474670 @default.
- W2018631337 cites W2335669075 @default.
- W2018631337 cites W2400231698 @default.
- W2018631337 cites W2891949238 @default.
- W2018631337 cites W4248782174 @default.
- W2018631337 cites W4375827233 @default.
- W2018631337 doi "https://doi.org/10.1016/j.ecolmodel.2008.05.004" @default.
- W2018631337 hasPublicationYear "2008" @default.
- W2018631337 type Work @default.
- W2018631337 sameAs 2018631337 @default.
- W2018631337 citedByCount "61" @default.
- W2018631337 countsByYear W20186313372012 @default.
- W2018631337 countsByYear W20186313372013 @default.
- W2018631337 countsByYear W20186313372014 @default.
- W2018631337 countsByYear W20186313372015 @default.
- W2018631337 countsByYear W20186313372016 @default.
- W2018631337 countsByYear W20186313372017 @default.
- W2018631337 countsByYear W20186313372018 @default.
- W2018631337 countsByYear W20186313372019 @default.
- W2018631337 countsByYear W20186313372020 @default.
- W2018631337 countsByYear W20186313372021 @default.
- W2018631337 countsByYear W20186313372022 @default.
- W2018631337 countsByYear W20186313372023 @default.
- W2018631337 crossrefType "journal-article" @default.
- W2018631337 hasAuthorship W2018631337A5020926162 @default.
- W2018631337 hasAuthorship W2018631337A5021184273 @default.