Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018686688> ?p ?o ?g. }
- W2018686688 endingPage "1106" @default.
- W2018686688 startingPage "1093" @default.
- W2018686688 abstract "AbstractFor some engineering design and manufacturing applications, particularly for evolving and new technologies, populations of manufactured components can be heterogeneous and consist of several subpopulations. The co-existence of n subpopulations can be common in devices when the manufacturing process is still maturing or highly variable. A new model is developed and demonstrated to determine accelerated burn-in and condition-based maintenance policies for populations composed of distinct subpopulations subject to stochastic degradation. Accelerated burn-in procedures with multiple accelerating factors are considered for the degradation-based heterogeneous populations. Condition-based maintenance is implemented during field operation after burn-in procedures. The proposed joint accelerated burn-in and condition-based maintenance policy are compared with two benchmark policies: a joint accelerated burn-in and age-based preventive replacement policy and a condition-based maintenance-only policy. Numerical examples are provided to illustrate the proposed procedure. Sensitivity analysis is performed to investigate the value of joint accelerated burn-in and condition-based maintenance policy and to indicate which type of policy should be applied according to different conditions and device characteristics.Keywords:: n-Subpopulationsstochastic degradationmixture degradation modelaccelerated burn-incondition-based maintenance Additional informationNotes on contributorsYisha XiangYisha Xiang is an Assistant Professor in the Department of Management Science at Sun Yat-sen University, China. She received her B.S. in Industrial Engineering from Nanjing University of Aeronautics & Astronautics, China, and M.S and Ph.D. in Industrial Engineering from the University of Arkansas. Her current research and teaching interests involve reliability modeling and optimization, risk analysis, and healthcare. She has published articles in refereed journals, such as IIE Transactions, European Journal of Operational Research, and Computers and Industrial Engineering. She is a member of IIE and INFORMS.David W. CoitDavid W. Coit is a Professor in the Department of Industrial & Systems Engineering at Rutgers University. His current research and teaching interests involve reliability modeling and optimization, risk analysis, and multi-objective optimization considering uncertainty. He received a B.S. degree in Mechanical Engineering from Cornell University, an MBA from Rensselaer Polytechnic Institute, and M.S. and Ph.D. degrees in Industrial Engineering from the University of Pittsburgh. He also has over 10 years of experience working for IIT Research Institute (IITRI), Rome, NY (now called Alion Science and Technology), where he was a reliability analyst, project manager, and engineering group manager. In 1999, he was awarded a CAREER grant from the National Science Foundation (NSF) to study reliability optimization. His research has been funded by NSF, U.S. Navy, U.S. Army, power utilities, and industry. He is a member of IIE and INFORMS.Qianmei (May) FengQianmei Feng is an Assistant Professor and the Brij and Sunita Agrawal Faculty Fellow in the Department of Industrial Engineering at the University of Houston, Houston, Texas. She received a Ph.D. degree in Industrial Engineering from the University of Washington, Seattle, Washington, in 2005. Her research interests include the areas of system modeling, analysis and optimization in quality and reliability engineering, with applications in evolving technologies (e.g., MEMS, biomedical implant devices), homeland security, and healthcare. She has published over 20 articles in refereed journals, such as IIE Transactions, IEEE Transactions on Reliability, Reliability Engineering and System Safety, Computers and Industrial Engineering, Journal of Operational Research Society, and Risk Analysis. Her research has been supported by the National Science Foundation, Department of Homeland Security, Texas Department of Transportation, and the Texas Higher Education Coordinating Board. She is a member of INFORMS, IIE, ASQ, and Alpha Pi Mu." @default.
- W2018686688 created "2016-06-24" @default.
- W2018686688 creator A5013847446 @default.
- W2018686688 creator A5063225585 @default.
- W2018686688 creator A5079662109 @default.
- W2018686688 date "2014-06-27" @default.
- W2018686688 modified "2023-10-03" @default.
- W2018686688 title "Accelerated burn-in and condition-based maintenance for<i>n</i>-subpopulations subject to stochastic degradation" @default.
- W2018686688 cites W110314235 @default.
- W2018686688 cites W1983276518 @default.
- W2018686688 cites W1987980523 @default.
- W2018686688 cites W1995723008 @default.
- W2018686688 cites W2013641085 @default.
- W2018686688 cites W2016352472 @default.
- W2018686688 cites W2019990268 @default.
- W2018686688 cites W2031470163 @default.
- W2018686688 cites W2045186954 @default.
- W2018686688 cites W2045834397 @default.
- W2018686688 cites W2047416222 @default.
- W2018686688 cites W2047476236 @default.
- W2018686688 cites W2048227639 @default.
- W2018686688 cites W2064494361 @default.
- W2018686688 cites W2075089284 @default.
- W2018686688 cites W2078063291 @default.
- W2018686688 cites W2091608060 @default.
- W2018686688 cites W2103717306 @default.
- W2018686688 cites W2108968817 @default.
- W2018686688 cites W2114087231 @default.
- W2018686688 cites W2126445794 @default.
- W2018686688 cites W2147664181 @default.
- W2018686688 cites W2148209128 @default.
- W2018686688 cites W2148268403 @default.
- W2018686688 cites W2310466376 @default.
- W2018686688 cites W2318319980 @default.
- W2018686688 cites W2488678869 @default.
- W2018686688 cites W3022528048 @default.
- W2018686688 cites W3098336475 @default.
- W2018686688 cites W4234534407 @default.
- W2018686688 cites W4236203705 @default.
- W2018686688 cites W4254372166 @default.
- W2018686688 doi "https://doi.org/10.1080/0740817x.2014.889335" @default.
- W2018686688 hasPublicationYear "2014" @default.
- W2018686688 type Work @default.
- W2018686688 sameAs 2018686688 @default.
- W2018686688 citedByCount "24" @default.
- W2018686688 countsByYear W20186866882015 @default.
- W2018686688 countsByYear W20186866882016 @default.
- W2018686688 countsByYear W20186866882017 @default.
- W2018686688 countsByYear W20186866882018 @default.
- W2018686688 countsByYear W20186866882019 @default.
- W2018686688 countsByYear W20186866882020 @default.
- W2018686688 countsByYear W20186866882022 @default.
- W2018686688 countsByYear W20186866882023 @default.
- W2018686688 crossrefType "journal-article" @default.
- W2018686688 hasAuthorship W2018686688A5013847446 @default.
- W2018686688 hasAuthorship W2018686688A5063225585 @default.
- W2018686688 hasAuthorship W2018686688A5079662109 @default.
- W2018686688 hasConcept C121332964 @default.
- W2018686688 hasConcept C127413603 @default.
- W2018686688 hasConcept C13280743 @default.
- W2018686688 hasConcept C163258240 @default.
- W2018686688 hasConcept C17744445 @default.
- W2018686688 hasConcept C179707776 @default.
- W2018686688 hasConcept C18555067 @default.
- W2018686688 hasConcept C185798385 @default.
- W2018686688 hasConcept C191935318 @default.
- W2018686688 hasConcept C199539241 @default.
- W2018686688 hasConcept C200601418 @default.
- W2018686688 hasConcept C205649164 @default.
- W2018686688 hasConcept C24090081 @default.
- W2018686688 hasConcept C2779679103 @default.
- W2018686688 hasConcept C41008148 @default.
- W2018686688 hasConcept C42475967 @default.
- W2018686688 hasConcept C43214815 @default.
- W2018686688 hasConcept C62520636 @default.
- W2018686688 hasConcept C66938386 @default.
- W2018686688 hasConcept C76155785 @default.
- W2018686688 hasConceptScore W2018686688C121332964 @default.
- W2018686688 hasConceptScore W2018686688C127413603 @default.
- W2018686688 hasConceptScore W2018686688C13280743 @default.
- W2018686688 hasConceptScore W2018686688C163258240 @default.
- W2018686688 hasConceptScore W2018686688C17744445 @default.
- W2018686688 hasConceptScore W2018686688C179707776 @default.
- W2018686688 hasConceptScore W2018686688C18555067 @default.
- W2018686688 hasConceptScore W2018686688C185798385 @default.
- W2018686688 hasConceptScore W2018686688C191935318 @default.
- W2018686688 hasConceptScore W2018686688C199539241 @default.
- W2018686688 hasConceptScore W2018686688C200601418 @default.
- W2018686688 hasConceptScore W2018686688C205649164 @default.
- W2018686688 hasConceptScore W2018686688C24090081 @default.
- W2018686688 hasConceptScore W2018686688C2779679103 @default.
- W2018686688 hasConceptScore W2018686688C41008148 @default.
- W2018686688 hasConceptScore W2018686688C42475967 @default.
- W2018686688 hasConceptScore W2018686688C43214815 @default.
- W2018686688 hasConceptScore W2018686688C62520636 @default.
- W2018686688 hasConceptScore W2018686688C66938386 @default.
- W2018686688 hasConceptScore W2018686688C76155785 @default.
- W2018686688 hasIssue "10" @default.