Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018697531> ?p ?o ?g. }
- W2018697531 abstract "A hybrid density-functional-theory and molecular-dynamics simulation scheme was proposed [Ogata et al., Comput. Phys. Commun. 149, 30 (2002)] in which a total atomistic system is partitioned, in real space, into the quantum (QM) region whose electronic structure is calculated with the density-functional theory and the classical (CL) region treated with the interatomic potential for the molecular dynamics. In the scheme, the link-atom method that uses hydrogen atoms for termination of the QM atoms is adopted to couple the QM and CL regions mechanically. A proper choice of the QM region that retains the original atomic configuration is limited in the link-atom method. In this paper we propose a coupling method, called the buffered-cluster method, with the introduction of buffer atoms to minimize possible effects arising from the finiteness of the size of the QM region. The buffered-cluster method is applicable to any reasonable choice of the QM region in a wide range of ceramics and semiconductor materials. The accuracy of the buffered-cluster method is analyzed by applying it to crystalline Si and alumina systems, to find little differences around the QM-CL boundaries in both relaxed configuration of the atoms and recoil forces on them due to their trial displacements. The insensitivity of the atomic forces to the choice of the QM region in the buffered-cluster method makes it possible to rechoose the QM region adaptively during the hybrid simulation run for fast computation. The hybrid simulation scheme with the buffered-cluster method is applied to analyze adsorption and dissociation processes of an ${mathrm{H}}_{2}mathrm{O}$ molecule on a notched Si-slab system with or without strains, in which the ${mathrm{H}}_{2}mathrm{O}$ interacts with the notch-bottom facet of $mathrm{Si}(100)text{ensuremath{-}}(2ifmmodetimeselsetexttimesfi{}1)$ dimer structure. The QM region is chosen in the system to cover the reaction region. Energy variations along the reaction paths show that the adsorption energy and the dissociation barrier of the ${mathrm{H}}_{2}mathrm{O}$ molecule on the Si(100) facet in the system are sensitive to the stain. The adsorption energy decreases substantially, while the dissociation barrier with H transferred to a nearby dimer increases, when the system is stretched. We perform hybrid simulation runs with the buffered-cluster method to study the adsorption and dissociation dynamics of the ${mathrm{H}}_{2}mathrm{O}$ molecule with the facet of $mathrm{Si}(100)text{ensuremath{-}}(2ifmmodetimeselsetexttimesfi{}1)$ in the nanostructured Si system at both stretched and unstrained conditions, in which the QM region is rechosen dynamically to trace the reaction atoms. The probability of the ${mathrm{H}}_{2}mathrm{O}$ dissociation and the following H-transfer path depend significantly on the strain applied to the system and on the initial conditions of the molecule." @default.
- W2018697531 created "2016-06-24" @default.
- W2018697531 creator A5049230332 @default.
- W2018697531 date "2005-07-21" @default.
- W2018697531 modified "2023-10-18" @default.
- W2018697531 title "Buffered-cluster method for hybridization of density-functional theory and classical molecular dynamics: Application to stress-dependent reaction of<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:msub><mml:mi mathvariant=normal>H</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant=normal>O</mml:mi></mml:mrow></mml:math>on nanostructured Si" @default.
- W2018697531 cites W1650728208 @default.
- W2018697531 cites W1965203667 @default.
- W2018697531 cites W1972295667 @default.
- W2018697531 cites W1973092964 @default.
- W2018697531 cites W1974687098 @default.
- W2018697531 cites W1976819255 @default.
- W2018697531 cites W1977230706 @default.
- W2018697531 cites W1978080426 @default.
- W2018697531 cites W1981368803 @default.
- W2018697531 cites W1982489731 @default.
- W2018697531 cites W1985095956 @default.
- W2018697531 cites W1987412860 @default.
- W2018697531 cites W1991057371 @default.
- W2018697531 cites W1997173539 @default.
- W2018697531 cites W2020897762 @default.
- W2018697531 cites W2030976617 @default.
- W2018697531 cites W2035720425 @default.
- W2018697531 cites W2037536856 @default.
- W2018697531 cites W2037782625 @default.
- W2018697531 cites W2073575966 @default.
- W2018697531 cites W2075389064 @default.
- W2018697531 cites W2076468654 @default.
- W2018697531 cites W2077314762 @default.
- W2018697531 cites W2078323060 @default.
- W2018697531 cites W2080878489 @default.
- W2018697531 cites W2085774513 @default.
- W2018697531 cites W2087841968 @default.
- W2018697531 cites W2088822485 @default.
- W2018697531 cites W2093481450 @default.
- W2018697531 cites W2098432400 @default.
- W2018697531 cites W2123143413 @default.
- W2018697531 cites W2141110352 @default.
- W2018697531 cites W2141519533 @default.
- W2018697531 cites W2146597851 @default.
- W2018697531 cites W2230728100 @default.
- W2018697531 cites W4250530934 @default.
- W2018697531 doi "https://doi.org/10.1103/physrevb.72.045348" @default.
- W2018697531 hasPublicationYear "2005" @default.
- W2018697531 type Work @default.
- W2018697531 sameAs 2018697531 @default.
- W2018697531 citedByCount "36" @default.
- W2018697531 countsByYear W20186975312012 @default.
- W2018697531 countsByYear W20186975312013 @default.
- W2018697531 countsByYear W20186975312015 @default.
- W2018697531 countsByYear W20186975312016 @default.
- W2018697531 countsByYear W20186975312017 @default.
- W2018697531 countsByYear W20186975312018 @default.
- W2018697531 countsByYear W20186975312019 @default.
- W2018697531 countsByYear W20186975312021 @default.
- W2018697531 countsByYear W20186975312022 @default.
- W2018697531 countsByYear W20186975312023 @default.
- W2018697531 crossrefType "journal-article" @default.
- W2018697531 hasAuthorship W2018697531A5049230332 @default.
- W2018697531 hasConcept C11413529 @default.
- W2018697531 hasConcept C121332964 @default.
- W2018697531 hasConcept C121864883 @default.
- W2018697531 hasConcept C149635348 @default.
- W2018697531 hasConcept C152365726 @default.
- W2018697531 hasConcept C164866538 @default.
- W2018697531 hasConcept C192562407 @default.
- W2018697531 hasConcept C19637589 @default.
- W2018697531 hasConcept C199360897 @default.
- W2018697531 hasConcept C32909587 @default.
- W2018697531 hasConcept C41008148 @default.
- W2018697531 hasConcept C45374587 @default.
- W2018697531 hasConcept C58312451 @default.
- W2018697531 hasConcept C59593255 @default.
- W2018697531 hasConcept C62520636 @default.
- W2018697531 hasConceptScore W2018697531C11413529 @default.
- W2018697531 hasConceptScore W2018697531C121332964 @default.
- W2018697531 hasConceptScore W2018697531C121864883 @default.
- W2018697531 hasConceptScore W2018697531C149635348 @default.
- W2018697531 hasConceptScore W2018697531C152365726 @default.
- W2018697531 hasConceptScore W2018697531C164866538 @default.
- W2018697531 hasConceptScore W2018697531C192562407 @default.
- W2018697531 hasConceptScore W2018697531C19637589 @default.
- W2018697531 hasConceptScore W2018697531C199360897 @default.
- W2018697531 hasConceptScore W2018697531C32909587 @default.
- W2018697531 hasConceptScore W2018697531C41008148 @default.
- W2018697531 hasConceptScore W2018697531C45374587 @default.
- W2018697531 hasConceptScore W2018697531C58312451 @default.
- W2018697531 hasConceptScore W2018697531C59593255 @default.
- W2018697531 hasConceptScore W2018697531C62520636 @default.
- W2018697531 hasIssue "4" @default.
- W2018697531 hasLocation W20186975311 @default.
- W2018697531 hasOpenAccess W2018697531 @default.
- W2018697531 hasPrimaryLocation W20186975311 @default.
- W2018697531 hasRelatedWork W1639119229 @default.
- W2018697531 hasRelatedWork W2026753576 @default.
- W2018697531 hasRelatedWork W2042300609 @default.
- W2018697531 hasRelatedWork W2044046954 @default.
- W2018697531 hasRelatedWork W2074521199 @default.
- W2018697531 hasRelatedWork W2084016744 @default.
- W2018697531 hasRelatedWork W2092831481 @default.