Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018719689> ?p ?o ?g. }
- W2018719689 endingPage "149" @default.
- W2018719689 startingPage "133" @default.
- W2018719689 abstract "The problem of finding an x∈Rn such that Ax⩽b and x⩾0 arises in numerous contexts. We propose a new optimization method for solving this feasibility problem. After converting Ax⩽b into a system of equations by introducing a slack variable for each of the linear inequalities, the method imposes an entropy function over both the original and the slack variables as the objective function. The resulting entropy optimization problem is convex and has an unconstrained convex dual. If the system is consistent and has an interior solution, then a closed-form formula converts the dual optimal solution to the primal optimal solution, which is a feasible solution for the original system of linear inequalities. An algorithm based on the Newton method is proposed for solving the unconstrained dual problem. The proposed algorithm enjoys the global convergence property with a quadratic rate of local convergence. However, if the system is inconsistent, the unconstrained dual is shown to be unbounded. Moreover, the same algorithm can detect possible inconsistency of the system. Our numerical examples reveal the insensitivity of the number of iterations to both the size of the problem and the distance between the initial solution and the feasible region. The performance of the proposed algorithm is compared to that of the surrogate constraint algorithm recently developed by Yang and Murty. Our comparison indicates that the proposed method is particularly suitable when the number of constraints is larger than that of the variables and the initial solution is not close to the feasible region." @default.
- W2018719689 created "2016-06-24" @default.
- W2018719689 creator A5001188843 @default.
- W2018719689 creator A5027860626 @default.
- W2018719689 creator A5042328316 @default.
- W2018719689 date "2002-08-01" @default.
- W2018719689 modified "2023-09-24" @default.
- W2018719689 title "Entropic perturbation method for solving a system of linear inequalities" @default.
- W2018719689 cites W1210424432 @default.
- W2018719689 cites W1495058637 @default.
- W2018719689 cites W1576347883 @default.
- W2018719689 cites W1588345844 @default.
- W2018719689 cites W1661542135 @default.
- W2018719689 cites W1966259407 @default.
- W2018719689 cites W1966986674 @default.
- W2018719689 cites W1980685696 @default.
- W2018719689 cites W1983678001 @default.
- W2018719689 cites W2009995718 @default.
- W2018719689 cites W2025293484 @default.
- W2018719689 cites W2031851108 @default.
- W2018719689 cites W2036368324 @default.
- W2018719689 cites W2037690395 @default.
- W2018719689 cites W2052064963 @default.
- W2018719689 cites W2057481738 @default.
- W2018719689 cites W2060073354 @default.
- W2018719689 cites W2074376648 @default.
- W2018719689 cites W2076663575 @default.
- W2018719689 cites W2079420046 @default.
- W2018719689 cites W2109093355 @default.
- W2018719689 cites W2116767432 @default.
- W2018719689 cites W2127470768 @default.
- W2018719689 cites W2266946488 @default.
- W2018719689 cites W2321466613 @default.
- W2018719689 cites W2329579984 @default.
- W2018719689 cites W2610857016 @default.
- W2018719689 cites W2611147814 @default.
- W2018719689 cites W3213545458 @default.
- W2018719689 doi "https://doi.org/10.1016/s0377-0427(01)00540-4" @default.
- W2018719689 hasPublicationYear "2002" @default.
- W2018719689 type Work @default.
- W2018719689 sameAs 2018719689 @default.
- W2018719689 citedByCount "2" @default.
- W2018719689 countsByYear W20187196892014 @default.
- W2018719689 crossrefType "journal-article" @default.
- W2018719689 hasAuthorship W2018719689A5001188843 @default.
- W2018719689 hasAuthorship W2018719689A5027860626 @default.
- W2018719689 hasAuthorship W2018719689A5042328316 @default.
- W2018719689 hasConcept C112680207 @default.
- W2018719689 hasConcept C121332964 @default.
- W2018719689 hasConcept C126255220 @default.
- W2018719689 hasConcept C127162648 @default.
- W2018719689 hasConcept C129844170 @default.
- W2018719689 hasConcept C134306372 @default.
- W2018719689 hasConcept C137836250 @default.
- W2018719689 hasConcept C145446738 @default.
- W2018719689 hasConcept C162324750 @default.
- W2018719689 hasConcept C177067428 @default.
- W2018719689 hasConcept C177918212 @default.
- W2018719689 hasConcept C2524010 @default.
- W2018719689 hasConcept C2777303404 @default.
- W2018719689 hasConcept C28826006 @default.
- W2018719689 hasConcept C31258907 @default.
- W2018719689 hasConcept C33923547 @default.
- W2018719689 hasConcept C41008148 @default.
- W2018719689 hasConcept C50522688 @default.
- W2018719689 hasConcept C57869625 @default.
- W2018719689 hasConcept C62520636 @default.
- W2018719689 hasConcept C94523830 @default.
- W2018719689 hasConceptScore W2018719689C112680207 @default.
- W2018719689 hasConceptScore W2018719689C121332964 @default.
- W2018719689 hasConceptScore W2018719689C126255220 @default.
- W2018719689 hasConceptScore W2018719689C127162648 @default.
- W2018719689 hasConceptScore W2018719689C129844170 @default.
- W2018719689 hasConceptScore W2018719689C134306372 @default.
- W2018719689 hasConceptScore W2018719689C137836250 @default.
- W2018719689 hasConceptScore W2018719689C145446738 @default.
- W2018719689 hasConceptScore W2018719689C162324750 @default.
- W2018719689 hasConceptScore W2018719689C177067428 @default.
- W2018719689 hasConceptScore W2018719689C177918212 @default.
- W2018719689 hasConceptScore W2018719689C2524010 @default.
- W2018719689 hasConceptScore W2018719689C2777303404 @default.
- W2018719689 hasConceptScore W2018719689C28826006 @default.
- W2018719689 hasConceptScore W2018719689C31258907 @default.
- W2018719689 hasConceptScore W2018719689C33923547 @default.
- W2018719689 hasConceptScore W2018719689C41008148 @default.
- W2018719689 hasConceptScore W2018719689C50522688 @default.
- W2018719689 hasConceptScore W2018719689C57869625 @default.
- W2018719689 hasConceptScore W2018719689C62520636 @default.
- W2018719689 hasConceptScore W2018719689C94523830 @default.
- W2018719689 hasIssue "1" @default.
- W2018719689 hasLocation W20187196891 @default.
- W2018719689 hasOpenAccess W2018719689 @default.
- W2018719689 hasPrimaryLocation W20187196891 @default.
- W2018719689 hasRelatedWork W1588473452 @default.
- W2018719689 hasRelatedWork W1976062981 @default.
- W2018719689 hasRelatedWork W2001264248 @default.
- W2018719689 hasRelatedWork W2018228211 @default.
- W2018719689 hasRelatedWork W2126193326 @default.