Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018757355> ?p ?o ?g. }
- W2018757355 endingPage "293" @default.
- W2018757355 startingPage "284" @default.
- W2018757355 abstract "Abstract A new recognition method of Support Vector Machines (SVMs) combined with wavelet-based feature extraction is proposed for identifying drugs hidden in human body. Preliminary data sets of eight kinds of samples are acquired by a home-built instrument using energy-dispersive X-ray diffraction (EDXRD) technology in a short detection time. Small sample size, poor signal-to-noise ratio (SNR) and high dimension of data make drugs identification a challenging problem. In this paper, the potential effective method solves the problem well. The spectral signal with poor SNR is obtained and processed with wavelet for feature extraction and then the wavelet coefficients are used as the inputs of SVMs. A multi-classifier of SVMs based on binary tree architecture (SVMs-BAT) is trained. The method of SVMs-BAT combined with wavelet-based feature extraction (WSVMs-BAT) is firstly compared with two methods: one is single SVMs-BAT which uses original data as inputs without preprocessing, the other is SVMs-BAT combined with feature extraction based on principal component analysis (PCA-SVMs-BAT). The high identification accuracy of WSVMs-BAT indicates that the method of feature extraction using wavelet can effectively represent the original data better. Then the recognition result of the proposed method is also compared with artificial neural network (ANN) and K-nearest neighbor (KNN) methods. Our findings show that the proposed method combined with EDXRD technology provides a good access to achieve the aim of automatic identification of illicit drugs." @default.
- W2018757355 created "2016-06-24" @default.
- W2018757355 creator A5003894776 @default.
- W2018757355 creator A5004263576 @default.
- W2018757355 creator A5004628410 @default.
- W2018757355 creator A5047172059 @default.
- W2018757355 creator A5070446031 @default.
- W2018757355 creator A5080504055 @default.
- W2018757355 creator A5081385630 @default.
- W2018757355 creator A5082763700 @default.
- W2018757355 date "2013-01-01" @default.
- W2018757355 modified "2023-09-28" @default.
- W2018757355 title "Support vector machines combined with wavelet-based feature extraction for identification of drugs hidden in anthropomorphic phantom" @default.
- W2018757355 cites W1579572292 @default.
- W2018757355 cites W1989301582 @default.
- W2018757355 cites W2007436629 @default.
- W2018757355 cites W2022546607 @default.
- W2018757355 cites W2042587424 @default.
- W2018757355 cites W2054648874 @default.
- W2018757355 cites W2062442206 @default.
- W2018757355 cites W2074058676 @default.
- W2018757355 cites W2084136177 @default.
- W2018757355 cites W2103183931 @default.
- W2018757355 cites W2106706488 @default.
- W2018757355 cites W2131678892 @default.
- W2018757355 cites W2132984323 @default.
- W2018757355 cites W2139212933 @default.
- W2018757355 cites W2143631886 @default.
- W2018757355 cites W2156447271 @default.
- W2018757355 cites W2172000360 @default.
- W2018757355 cites W2373744349 @default.
- W2018757355 doi "https://doi.org/10.1016/j.measurement.2012.06.016" @default.
- W2018757355 hasPublicationYear "2013" @default.
- W2018757355 type Work @default.
- W2018757355 sameAs 2018757355 @default.
- W2018757355 citedByCount "11" @default.
- W2018757355 countsByYear W20187573552013 @default.
- W2018757355 countsByYear W20187573552014 @default.
- W2018757355 countsByYear W20187573552015 @default.
- W2018757355 countsByYear W20187573552016 @default.
- W2018757355 countsByYear W20187573552023 @default.
- W2018757355 crossrefType "journal-article" @default.
- W2018757355 hasAuthorship W2018757355A5003894776 @default.
- W2018757355 hasAuthorship W2018757355A5004263576 @default.
- W2018757355 hasAuthorship W2018757355A5004628410 @default.
- W2018757355 hasAuthorship W2018757355A5047172059 @default.
- W2018757355 hasAuthorship W2018757355A5070446031 @default.
- W2018757355 hasAuthorship W2018757355A5080504055 @default.
- W2018757355 hasAuthorship W2018757355A5081385630 @default.
- W2018757355 hasAuthorship W2018757355A5082763700 @default.
- W2018757355 hasConcept C12267149 @default.
- W2018757355 hasConcept C153180895 @default.
- W2018757355 hasConcept C154945302 @default.
- W2018757355 hasConcept C196216189 @default.
- W2018757355 hasConcept C27438332 @default.
- W2018757355 hasConcept C34736171 @default.
- W2018757355 hasConcept C41008148 @default.
- W2018757355 hasConcept C46286280 @default.
- W2018757355 hasConcept C47432892 @default.
- W2018757355 hasConcept C52622490 @default.
- W2018757355 hasConcept C83665646 @default.
- W2018757355 hasConcept C95623464 @default.
- W2018757355 hasConceptScore W2018757355C12267149 @default.
- W2018757355 hasConceptScore W2018757355C153180895 @default.
- W2018757355 hasConceptScore W2018757355C154945302 @default.
- W2018757355 hasConceptScore W2018757355C196216189 @default.
- W2018757355 hasConceptScore W2018757355C27438332 @default.
- W2018757355 hasConceptScore W2018757355C34736171 @default.
- W2018757355 hasConceptScore W2018757355C41008148 @default.
- W2018757355 hasConceptScore W2018757355C46286280 @default.
- W2018757355 hasConceptScore W2018757355C47432892 @default.
- W2018757355 hasConceptScore W2018757355C52622490 @default.
- W2018757355 hasConceptScore W2018757355C83665646 @default.
- W2018757355 hasConceptScore W2018757355C95623464 @default.
- W2018757355 hasIssue "1" @default.
- W2018757355 hasLocation W20187573551 @default.
- W2018757355 hasOpenAccess W2018757355 @default.
- W2018757355 hasPrimaryLocation W20187573551 @default.
- W2018757355 hasRelatedWork W1554752622 @default.
- W2018757355 hasRelatedWork W1968109226 @default.
- W2018757355 hasRelatedWork W1976652320 @default.
- W2018757355 hasRelatedWork W2032085266 @default.
- W2018757355 hasRelatedWork W2070886155 @default.
- W2018757355 hasRelatedWork W2091253924 @default.
- W2018757355 hasRelatedWork W2097756734 @default.
- W2018757355 hasRelatedWork W2122094817 @default.
- W2018757355 hasRelatedWork W2138936914 @default.
- W2018757355 hasRelatedWork W2142016217 @default.
- W2018757355 hasRelatedWork W2142674421 @default.
- W2018757355 hasRelatedWork W2144199077 @default.
- W2018757355 hasRelatedWork W2145775353 @default.
- W2018757355 hasRelatedWork W2161970352 @default.
- W2018757355 hasRelatedWork W2361389767 @default.
- W2018757355 hasRelatedWork W2379300631 @default.
- W2018757355 hasRelatedWork W2385223889 @default.
- W2018757355 hasRelatedWork W2599463079 @default.
- W2018757355 hasRelatedWork W2971100993 @default.
- W2018757355 hasRelatedWork W363213008 @default.