Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018777794> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2018777794 endingPage "1916" @default.
- W2018777794 startingPage "1908" @default.
- W2018777794 abstract "This study presents a novel method to classify the brain tumors by means of efficient and integrated methods so as to increase the classification accuracy. In conventional systems, the problem being the same to extract the feature sets from the database and classify tumors based on the features sets. The main idea in plethora of earlier researches related to any classification method is to increase the classification accuracy.The actual need is to achieve a better accuracy in classification, by extracting more relevant feature sets after dimensionality reduction. There exists a trade-off between accuracy and the number of feature sets. Hence the focus in this study is to implement Discrete Cosine Transform (DCT) on the brain tumor images for various classes. Using DCT, by itself, it offers a fair dimension reduction in feature sets.Later on, sequentially K-means algorithm is applied on DCT coefficients to cluster the feature sets. These cluster information are considered as refined feature sets and classified using Support Vector Machine (SVM) is proposed in this study. This method of using DCT helps to adjust and vary the performance of classification based on the count of the DCT coefficients taken into account. There exists a good demand for an automatic classification of brain tumors which grealtly helps in the process of diagnosis. In this novel work, an average of 97% and a maximum of 100% classification accuracy has been achieved. This research is basically aiming and opening a new way of classification under compressed domain. Hence this study may be highly suitable for diagnosing under mobile computing and internet based medical diagnosis." @default.
- W2018777794 created "2016-06-24" @default.
- W2018777794 creator A5016073289 @default.
- W2018777794 creator A5032449033 @default.
- W2018777794 date "2014-10-01" @default.
- W2018777794 modified "2023-09-29" @default.
- W2018777794 title "BRAIN TUMOR CLASSIFICATION BASED ON CLUSTERED DISCRETE COSINE TRANSFORM IN COMPRESSED DOMAIN" @default.
- W2018777794 cites W147079756 @default.
- W2018777794 cites W1989081947 @default.
- W2018777794 cites W2030844500 @default.
- W2018777794 cites W2046132248 @default.
- W2018777794 cites W2047564657 @default.
- W2018777794 cites W2058760036 @default.
- W2018777794 cites W2070394694 @default.
- W2018777794 cites W2098765040 @default.
- W2018777794 cites W2101536823 @default.
- W2018777794 cites W2108707174 @default.
- W2018777794 cites W2120317768 @default.
- W2018777794 cites W2128483847 @default.
- W2018777794 cites W2129648876 @default.
- W2018777794 cites W2130367898 @default.
- W2018777794 cites W2139602474 @default.
- W2018777794 cites W2158670896 @default.
- W2018777794 cites W2270748580 @default.
- W2018777794 doi "https://doi.org/10.3844/jcssp.2014.1908.1916" @default.
- W2018777794 hasPublicationYear "2014" @default.
- W2018777794 type Work @default.
- W2018777794 sameAs 2018777794 @default.
- W2018777794 citedByCount "4" @default.
- W2018777794 countsByYear W20187777942017 @default.
- W2018777794 countsByYear W20187777942020 @default.
- W2018777794 countsByYear W20187777942022 @default.
- W2018777794 countsByYear W20187777942023 @default.
- W2018777794 crossrefType "journal-article" @default.
- W2018777794 hasAuthorship W2018777794A5016073289 @default.
- W2018777794 hasAuthorship W2018777794A5032449033 @default.
- W2018777794 hasBestOaLocation W20187777941 @default.
- W2018777794 hasConcept C115961682 @default.
- W2018777794 hasConcept C12267149 @default.
- W2018777794 hasConcept C124101348 @default.
- W2018777794 hasConcept C138885662 @default.
- W2018777794 hasConcept C153180895 @default.
- W2018777794 hasConcept C154945302 @default.
- W2018777794 hasConcept C2221639 @default.
- W2018777794 hasConcept C2776401178 @default.
- W2018777794 hasConcept C41008148 @default.
- W2018777794 hasConcept C41895202 @default.
- W2018777794 hasConcept C70518039 @default.
- W2018777794 hasConcept C83665646 @default.
- W2018777794 hasConceptScore W2018777794C115961682 @default.
- W2018777794 hasConceptScore W2018777794C12267149 @default.
- W2018777794 hasConceptScore W2018777794C124101348 @default.
- W2018777794 hasConceptScore W2018777794C138885662 @default.
- W2018777794 hasConceptScore W2018777794C153180895 @default.
- W2018777794 hasConceptScore W2018777794C154945302 @default.
- W2018777794 hasConceptScore W2018777794C2221639 @default.
- W2018777794 hasConceptScore W2018777794C2776401178 @default.
- W2018777794 hasConceptScore W2018777794C41008148 @default.
- W2018777794 hasConceptScore W2018777794C41895202 @default.
- W2018777794 hasConceptScore W2018777794C70518039 @default.
- W2018777794 hasConceptScore W2018777794C83665646 @default.
- W2018777794 hasIssue "10" @default.
- W2018777794 hasLocation W20187777941 @default.
- W2018777794 hasOpenAccess W2018777794 @default.
- W2018777794 hasPrimaryLocation W20187777941 @default.
- W2018777794 hasRelatedWork W1591194399 @default.
- W2018777794 hasRelatedWork W2008870648 @default.
- W2018777794 hasRelatedWork W2090269531 @default.
- W2018777794 hasRelatedWork W2139894942 @default.
- W2018777794 hasRelatedWork W2153189372 @default.
- W2018777794 hasRelatedWork W2348964713 @default.
- W2018777794 hasRelatedWork W2360035901 @default.
- W2018777794 hasRelatedWork W2734744645 @default.
- W2018777794 hasRelatedWork W2187500075 @default.
- W2018777794 hasRelatedWork W2886616187 @default.
- W2018777794 hasVolume "10" @default.
- W2018777794 isParatext "false" @default.
- W2018777794 isRetracted "false" @default.
- W2018777794 magId "2018777794" @default.
- W2018777794 workType "article" @default.