Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018784354> ?p ?o ?g. }
- W2018784354 endingPage "2085" @default.
- W2018784354 startingPage "2069" @default.
- W2018784354 abstract "One of the technical challenges in cine magnetic resonance imaging (MRI) is to reduce the acquisition time to enable the high spatio-temporal resolution imaging of a cardiac volume within a short scan time. Recently, compressed sensing approaches have been investigated extensively for highly accelerated cine MRI by exploiting transform domain sparsity using linear transforms such as wavelets, and Fourier. However, in cardiac cine imaging, the cardiac volume changes significantly between frames, and there often exist abrupt pixel value changes along time. In order to effectively sparsify such temporal variations, it is necessary to exploit temporal redundancy along motion trajectories. This paper introduces a novel patch-based reconstruction method to exploit geometric similarities in the spatio-temporal domain. In particular, we use a low rank constraint for similar patches along motion, based on the observation that rank structures are relatively less sensitive to global intensity changes, but make it easier to capture moving edges. A Nash equilibrium formulation with relaxation is employed to guarantee convergence. Experimental results show that the proposed algorithm clearly reconstructs important anatomical structures in cardiac cine image and provides improved image quality compared to existing state-of-the-art methods such as k-t FOCUSS, k-t SLR, and MASTeR." @default.
- W2018784354 created "2016-06-24" @default.
- W2018784354 creator A5012644755 @default.
- W2018784354 creator A5026523226 @default.
- W2018784354 creator A5033847023 @default.
- W2018784354 creator A5038806083 @default.
- W2018784354 creator A5076835858 @default.
- W2018784354 date "2014-11-01" @default.
- W2018784354 modified "2023-09-25" @default.
- W2018784354 title "Motion Adaptive Patch-Based Low-Rank Approach for Compressed Sensing Cardiac Cine MRI" @default.
- W2018784354 cites W1493250972 @default.
- W2018784354 cites W1964792401 @default.
- W2018784354 cites W1970948570 @default.
- W2018784354 cites W1979954835 @default.
- W2018784354 cites W1991217933 @default.
- W2018784354 cites W1999795676 @default.
- W2018784354 cites W1999844561 @default.
- W2018784354 cites W2003881455 @default.
- W2018784354 cites W2008257035 @default.
- W2018784354 cites W2017162022 @default.
- W2018784354 cites W2025666718 @default.
- W2018784354 cites W2031993275 @default.
- W2018784354 cites W2042965174 @default.
- W2018784354 cites W2054077806 @default.
- W2018784354 cites W2056201402 @default.
- W2018784354 cites W2056370875 @default.
- W2018784354 cites W2070678378 @default.
- W2018784354 cites W2073825525 @default.
- W2018784354 cites W2083609718 @default.
- W2018784354 cites W2086782272 @default.
- W2018784354 cites W2097073572 @default.
- W2018784354 cites W2101675075 @default.
- W2018784354 cites W2109146178 @default.
- W2018784354 cites W2111589951 @default.
- W2018784354 cites W2115221929 @default.
- W2018784354 cites W2122315118 @default.
- W2018784354 cites W2123879018 @default.
- W2018784354 cites W2128617839 @default.
- W2018784354 cites W2132122471 @default.
- W2018784354 cites W2132652047 @default.
- W2018784354 cites W2135687986 @default.
- W2018784354 cites W2136398689 @default.
- W2018784354 cites W2145096794 @default.
- W2018784354 cites W2147516887 @default.
- W2018784354 cites W2149306479 @default.
- W2018784354 cites W2151696421 @default.
- W2018784354 cites W2155268695 @default.
- W2018784354 cites W2156739854 @default.
- W2018784354 cites W2158928439 @default.
- W2018784354 cites W2160547390 @default.
- W2018784354 cites W2162029555 @default.
- W2018784354 cites W2168668658 @default.
- W2018784354 cites W2543794315 @default.
- W2018784354 cites W2550766755 @default.
- W2018784354 cites W2611328865 @default.
- W2018784354 cites W3106359998 @default.
- W2018784354 cites W3123837026 @default.
- W2018784354 cites W4229650096 @default.
- W2018784354 cites W4240159220 @default.
- W2018784354 cites W4250955649 @default.
- W2018784354 doi "https://doi.org/10.1109/tmi.2014.2330426" @default.
- W2018784354 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24951686" @default.
- W2018784354 hasPublicationYear "2014" @default.
- W2018784354 type Work @default.
- W2018784354 sameAs 2018784354 @default.
- W2018784354 citedByCount "62" @default.
- W2018784354 countsByYear W20187843542014 @default.
- W2018784354 countsByYear W20187843542015 @default.
- W2018784354 countsByYear W20187843542016 @default.
- W2018784354 countsByYear W20187843542017 @default.
- W2018784354 countsByYear W20187843542018 @default.
- W2018784354 countsByYear W20187843542019 @default.
- W2018784354 countsByYear W20187843542020 @default.
- W2018784354 countsByYear W20187843542021 @default.
- W2018784354 countsByYear W20187843542022 @default.
- W2018784354 countsByYear W20187843542023 @default.
- W2018784354 crossrefType "journal-article" @default.
- W2018784354 hasAuthorship W2018784354A5012644755 @default.
- W2018784354 hasAuthorship W2018784354A5026523226 @default.
- W2018784354 hasAuthorship W2018784354A5033847023 @default.
- W2018784354 hasAuthorship W2018784354A5038806083 @default.
- W2018784354 hasAuthorship W2018784354A5076835858 @default.
- W2018784354 hasConcept C111919701 @default.
- W2018784354 hasConcept C119666444 @default.
- W2018784354 hasConcept C120665830 @default.
- W2018784354 hasConcept C121332964 @default.
- W2018784354 hasConcept C124851039 @default.
- W2018784354 hasConcept C126838900 @default.
- W2018784354 hasConcept C141379421 @default.
- W2018784354 hasConcept C143409427 @default.
- W2018784354 hasConcept C152124472 @default.
- W2018784354 hasConcept C154945302 @default.
- W2018784354 hasConcept C157787499 @default.
- W2018784354 hasConcept C31972630 @default.
- W2018784354 hasConcept C41008148 @default.
- W2018784354 hasConcept C47432892 @default.
- W2018784354 hasConcept C71924100 @default.
- W2018784354 hasConceptScore W2018784354C111919701 @default.