Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018840556> ?p ?o ?g. }
- W2018840556 endingPage "4148" @default.
- W2018840556 startingPage "4130" @default.
- W2018840556 abstract "The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below dmax. The electron contamination model was found to be suboptimal to model the dose around dmax, especially for physical wedges at smaller source to phantom distances. For the asymmetric field verification, absolute dose difference of up to 4% were observed for the most extreme asymmetries. Compared to the SPB, the penumbra modeling is considerably improved (1%, 1 mm). At the interface between solid water and cork, profiles show a better agreement with AAA. Depth dose curves in the cork are substantially better with AAA than with SPB. Improvements are more pronounced for 18 MV than for 6 MV. Point dose measurements in the thoracic phantom are mostly within 5%. In general, we can conclude that, compared to SPB, AAA improves the accuracy of dose calculations. Particular progress was made with respect to the penumbra and low dose regions. In heterogeneous materials, improvements are substantial and more pronounced for high (18 MV) than for low (6 MV) energies." @default.
- W2018840556 created "2016-06-24" @default.
- W2018840556 creator A5014151716 @default.
- W2018840556 creator A5022282438 @default.
- W2018840556 creator A5057400447 @default.
- W2018840556 creator A5057760676 @default.
- W2018840556 creator A5060345370 @default.
- W2018840556 creator A5064977637 @default.
- W2018840556 creator A5071411341 @default.
- W2018840556 creator A5082254210 @default.
- W2018840556 creator A5086163108 @default.
- W2018840556 creator A5086477654 @default.
- W2018840556 date "2006-10-17" @default.
- W2018840556 modified "2023-10-01" @default.
- W2018840556 title "Testing of the analytical anisotropic algorithm for photon dose calculation" @default.
- W2018840556 cites W1665071313 @default.
- W2018840556 cites W1964854695 @default.
- W2018840556 cites W1967121735 @default.
- W2018840556 cites W1972767446 @default.
- W2018840556 cites W1975279634 @default.
- W2018840556 cites W1980075801 @default.
- W2018840556 cites W1983813116 @default.
- W2018840556 cites W1986176682 @default.
- W2018840556 cites W1986217883 @default.
- W2018840556 cites W1987551106 @default.
- W2018840556 cites W1988719037 @default.
- W2018840556 cites W1996461636 @default.
- W2018840556 cites W1996475956 @default.
- W2018840556 cites W2005105648 @default.
- W2018840556 cites W2009530441 @default.
- W2018840556 cites W2010369748 @default.
- W2018840556 cites W2016477277 @default.
- W2018840556 cites W2022070056 @default.
- W2018840556 cites W2030684034 @default.
- W2018840556 cites W2050976201 @default.
- W2018840556 cites W2052582231 @default.
- W2018840556 cites W2081022087 @default.
- W2018840556 cites W2085139917 @default.
- W2018840556 cites W2099044879 @default.
- W2018840556 cites W2099104461 @default.
- W2018840556 cites W2122280225 @default.
- W2018840556 cites W2122809782 @default.
- W2018840556 cites W2135920140 @default.
- W2018840556 cites W2151923128 @default.
- W2018840556 cites W2152432677 @default.
- W2018840556 cites W2161389759 @default.
- W2018840556 cites W2163242083 @default.
- W2018840556 doi "https://doi.org/10.1118/1.2358333" @default.
- W2018840556 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17153392" @default.
- W2018840556 hasPublicationYear "2006" @default.
- W2018840556 type Work @default.
- W2018840556 sameAs 2018840556 @default.
- W2018840556 citedByCount "248" @default.
- W2018840556 countsByYear W20188405562012 @default.
- W2018840556 countsByYear W20188405562013 @default.
- W2018840556 countsByYear W20188405562014 @default.
- W2018840556 countsByYear W20188405562015 @default.
- W2018840556 countsByYear W20188405562016 @default.
- W2018840556 countsByYear W20188405562017 @default.
- W2018840556 countsByYear W20188405562018 @default.
- W2018840556 countsByYear W20188405562019 @default.
- W2018840556 countsByYear W20188405562020 @default.
- W2018840556 countsByYear W20188405562021 @default.
- W2018840556 countsByYear W20188405562022 @default.
- W2018840556 countsByYear W20188405562023 @default.
- W2018840556 crossrefType "journal-article" @default.
- W2018840556 hasAuthorship W2018840556A5014151716 @default.
- W2018840556 hasAuthorship W2018840556A5022282438 @default.
- W2018840556 hasAuthorship W2018840556A5057400447 @default.
- W2018840556 hasAuthorship W2018840556A5057760676 @default.
- W2018840556 hasAuthorship W2018840556A5060345370 @default.
- W2018840556 hasAuthorship W2018840556A5064977637 @default.
- W2018840556 hasAuthorship W2018840556A5071411341 @default.
- W2018840556 hasAuthorship W2018840556A5082254210 @default.
- W2018840556 hasAuthorship W2018840556A5086163108 @default.
- W2018840556 hasAuthorship W2018840556A5086477654 @default.
- W2018840556 hasConcept C104293457 @default.
- W2018840556 hasConcept C105795698 @default.
- W2018840556 hasConcept C11413529 @default.
- W2018840556 hasConcept C120665830 @default.
- W2018840556 hasConcept C121332964 @default.
- W2018840556 hasConcept C126322002 @default.
- W2018840556 hasConcept C154945302 @default.
- W2018840556 hasConcept C159317903 @default.
- W2018840556 hasConcept C168834538 @default.
- W2018840556 hasConcept C19499675 @default.
- W2018840556 hasConcept C201645570 @default.
- W2018840556 hasConcept C27753989 @default.
- W2018840556 hasConcept C2989005 @default.
- W2018840556 hasConcept C30475298 @default.
- W2018840556 hasConcept C31601959 @default.
- W2018840556 hasConcept C33923547 @default.
- W2018840556 hasConcept C34445779 @default.
- W2018840556 hasConcept C41008148 @default.
- W2018840556 hasConcept C509974204 @default.
- W2018840556 hasConcept C520434653 @default.
- W2018840556 hasConcept C62520636 @default.
- W2018840556 hasConcept C71924100 @default.