Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018845581> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2018845581 endingPage "259" @default.
- W2018845581 startingPage "223" @default.
- W2018845581 abstract "Partitioner algebras are defined by Baumgartner and Weese (Trans. Amer. Math. Soc. 274 (2) (1982) 619) as a natural tool for studying the properties of maximal almost disjoint families of subsets of ω . We prove from PFA + and ♢( S 0 2 ) that there exists a partitioner algebra which contains a subalgebra which is not representable as a partitioner algebra." @default.
- W2018845581 created "2016-06-24" @default.
- W2018845581 creator A5055476205 @default.
- W2018845581 creator A5064365689 @default.
- W2018845581 date "2002-10-01" @default.
- W2018845581 modified "2023-09-29" @default.
- W2018845581 title "Partition subalgebras for maximal almost disjoint families" @default.
- W2018845581 cites W187570007 @default.
- W2018845581 cites W1975169685 @default.
- W2018845581 cites W2010845554 @default.
- W2018845581 cites W2015263890 @default.
- W2018845581 cites W2025774568 @default.
- W2018845581 cites W2045418771 @default.
- W2018845581 cites W2152989620 @default.
- W2018845581 cites W226912456 @default.
- W2018845581 cites W2318231933 @default.
- W2018845581 cites W2595353538 @default.
- W2018845581 cites W277279003 @default.
- W2018845581 cites W2799061192 @default.
- W2018845581 cites W588060734 @default.
- W2018845581 cites W81494948 @default.
- W2018845581 cites W844015664 @default.
- W2018845581 doi "https://doi.org/10.1016/s0168-0072(01)00120-8" @default.
- W2018845581 hasPublicationYear "2002" @default.
- W2018845581 type Work @default.
- W2018845581 sameAs 2018845581 @default.
- W2018845581 citedByCount "2" @default.
- W2018845581 countsByYear W20188455812013 @default.
- W2018845581 countsByYear W20188455812016 @default.
- W2018845581 crossrefType "journal-article" @default.
- W2018845581 hasAuthorship W2018845581A5055476205 @default.
- W2018845581 hasAuthorship W2018845581A5064365689 @default.
- W2018845581 hasBestOaLocation W20188455811 @default.
- W2018845581 hasConcept C114614502 @default.
- W2018845581 hasConcept C118615104 @default.
- W2018845581 hasConcept C136119220 @default.
- W2018845581 hasConcept C202444582 @default.
- W2018845581 hasConcept C33923547 @default.
- W2018845581 hasConcept C42812 @default.
- W2018845581 hasConcept C45340560 @default.
- W2018845581 hasConcept C67996461 @default.
- W2018845581 hasConceptScore W2018845581C114614502 @default.
- W2018845581 hasConceptScore W2018845581C118615104 @default.
- W2018845581 hasConceptScore W2018845581C136119220 @default.
- W2018845581 hasConceptScore W2018845581C202444582 @default.
- W2018845581 hasConceptScore W2018845581C33923547 @default.
- W2018845581 hasConceptScore W2018845581C42812 @default.
- W2018845581 hasConceptScore W2018845581C45340560 @default.
- W2018845581 hasConceptScore W2018845581C67996461 @default.
- W2018845581 hasIssue "1-3" @default.
- W2018845581 hasLocation W20188455811 @default.
- W2018845581 hasOpenAccess W2018845581 @default.
- W2018845581 hasPrimaryLocation W20188455811 @default.
- W2018845581 hasRelatedWork W1193275511 @default.
- W2018845581 hasRelatedWork W1924677002 @default.
- W2018845581 hasRelatedWork W2018845581 @default.
- W2018845581 hasRelatedWork W2140036258 @default.
- W2018845581 hasRelatedWork W2145358719 @default.
- W2018845581 hasRelatedWork W2613892077 @default.
- W2018845581 hasRelatedWork W284308051 @default.
- W2018845581 hasRelatedWork W2963699585 @default.
- W2018845581 hasRelatedWork W2964064473 @default.
- W2018845581 hasRelatedWork W60053231 @default.
- W2018845581 hasVolume "117" @default.
- W2018845581 isParatext "false" @default.
- W2018845581 isRetracted "false" @default.
- W2018845581 magId "2018845581" @default.
- W2018845581 workType "article" @default.