Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018856657> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2018856657 endingPage "292" @default.
- W2018856657 startingPage "282" @default.
- W2018856657 abstract "Summary A new transient analytical model has been developed to study the temperature and stress distribution induced by nonisothermal fluid injection, particularly conventional waterflooding. In the model, the transient pressure, temperature, and stress fields are computed consecutively. The pressure field has been computed by using either the exponential integral solution for a unit mobility ratio displacement or Ramey's composite reservoir model for a nonunit mobility ratio pistonlike displacement. The transient temperature field has been computed by using a model that can account for both the overburden heat losses and transversal heat dispersion within the reservoir. The stress distribution has been calculated with a method presented for a plane strain in a hollow cylinder. The results implied that the thermoelastic changes in the cooled zone could affect the surrounding stress fields in a profound manner. For instance, for a porous medium with stiff material (such as carbonate reservoirs) owing to cooling by the injected cold water, large-scale tensile stresses arise and may induce new fractures (or propagate existing ones) far into the reservoir. In addition, a major tangential stress concentration develops just in front of the cooled zone; hence, shear yield is highly likely to occur ahead of the thermal front. The 2D treatment of the temperature field makes the new method superior to the previous analytical models, where only a 1D field has been used. Introduction Stress distributions in a reservoir directly affect the integrity or failure of reservoir rock. Rock failure can be engineered to improve well injectivity or productivity. Undesired failures, on the other hand, can cause significant reductions in the sweep efficiency of secondary- and enhanced-oil-recovery processes. Therefore, an understanding of stress distribution during injection processes is of great importance to design engineers. Consider, for example, a waterflooding operation in which a fluid that is significantly colder than the reservoir rock and fluids is injected into the reservoir. During waterflooding, the initial stress distribution is changed because of two principal factors. First, injection of water changes the reservoir pressure distribution. Second, the temperature difference between the injected fluid and initial reservoir temperature causes additional changes in the form of thermal stress. The influence of thermal stresses in fracturing geothermal reservoirs has been appreciated fairly early (Murphy 1979). The studies concerning geothermal reservoirs noted that thermal stresses may lead to the opening of secondary fractures. Such fractures reduce the resistance to flow and, hence, increase the injectivity of the wells. Transient stress-distribution studies resulting from injection into oil reservoirs have also started quite early (Geertsma 1978; Paslay and Cheatham 1963; Deily and Owens 1969). The analogy between pressure and thermal effects has long been recognized (Lubinksi 1954). Seth and Gray (1968) formalized this analogy between the pressure and thermal effects on stress distribution in an oil reservoir during production. Later, Perkins and Gonzalez (1984, 1985) used the same analogy to study thermoelastic stresses around a wellbore. They have developed analytical solutions and indicated possible use of their solutions to predict the change in fracture propagation. The classical work of Haimson and Fairhurst (1967) presented an analytical solution for a plane-strain case to study initiation and extension of hydraulic fractures. The works of Bratli and Risnes (1981) and Risnes et al. (1982) considered stresses around a wellbore with special considerations of fluid flow in unconsolidated sands. The analytical solutions developed by Bratli and Risnes (1981) have been summarized and simplified to apply to the case of flow into a wellbore in an infinite reservoir by Fjaer et al. (1992)." @default.
- W2018856657 created "2016-06-24" @default.
- W2018856657 creator A5069374679 @default.
- W2018856657 date "2006-05-01" @default.
- W2018856657 modified "2023-09-27" @default.
- W2018856657 title "An Analytical Model of Temperature and Stress Fields During Cold-Water Injection Into an Oil Reservoir" @default.
- W2018856657 doi "https://doi.org/10.2118/88762-pa" @default.
- W2018856657 hasPublicationYear "2006" @default.
- W2018856657 type Work @default.
- W2018856657 sameAs 2018856657 @default.
- W2018856657 citedByCount "13" @default.
- W2018856657 countsByYear W20188566572012 @default.
- W2018856657 countsByYear W20188566572013 @default.
- W2018856657 countsByYear W20188566572014 @default.
- W2018856657 countsByYear W20188566572015 @default.
- W2018856657 countsByYear W20188566572016 @default.
- W2018856657 countsByYear W20188566572017 @default.
- W2018856657 crossrefType "journal-article" @default.
- W2018856657 hasAuthorship W2018856657A5069374679 @default.
- W2018856657 hasConcept C105569014 @default.
- W2018856657 hasConcept C107551265 @default.
- W2018856657 hasConcept C121332964 @default.
- W2018856657 hasConcept C127313418 @default.
- W2018856657 hasConcept C127413603 @default.
- W2018856657 hasConcept C135628077 @default.
- W2018856657 hasConcept C138885662 @default.
- W2018856657 hasConcept C15744967 @default.
- W2018856657 hasConcept C181965411 @default.
- W2018856657 hasConcept C187320778 @default.
- W2018856657 hasConcept C192562407 @default.
- W2018856657 hasConcept C205093917 @default.
- W2018856657 hasConcept C21036866 @default.
- W2018856657 hasConcept C2777201227 @default.
- W2018856657 hasConcept C2778414698 @default.
- W2018856657 hasConcept C2780383887 @default.
- W2018856657 hasConcept C29320194 @default.
- W2018856657 hasConcept C41895202 @default.
- W2018856657 hasConcept C542102704 @default.
- W2018856657 hasConcept C57879066 @default.
- W2018856657 hasConcept C6648577 @default.
- W2018856657 hasConcept C66938386 @default.
- W2018856657 hasConceptScore W2018856657C105569014 @default.
- W2018856657 hasConceptScore W2018856657C107551265 @default.
- W2018856657 hasConceptScore W2018856657C121332964 @default.
- W2018856657 hasConceptScore W2018856657C127313418 @default.
- W2018856657 hasConceptScore W2018856657C127413603 @default.
- W2018856657 hasConceptScore W2018856657C135628077 @default.
- W2018856657 hasConceptScore W2018856657C138885662 @default.
- W2018856657 hasConceptScore W2018856657C15744967 @default.
- W2018856657 hasConceptScore W2018856657C181965411 @default.
- W2018856657 hasConceptScore W2018856657C187320778 @default.
- W2018856657 hasConceptScore W2018856657C192562407 @default.
- W2018856657 hasConceptScore W2018856657C205093917 @default.
- W2018856657 hasConceptScore W2018856657C21036866 @default.
- W2018856657 hasConceptScore W2018856657C2777201227 @default.
- W2018856657 hasConceptScore W2018856657C2778414698 @default.
- W2018856657 hasConceptScore W2018856657C2780383887 @default.
- W2018856657 hasConceptScore W2018856657C29320194 @default.
- W2018856657 hasConceptScore W2018856657C41895202 @default.
- W2018856657 hasConceptScore W2018856657C542102704 @default.
- W2018856657 hasConceptScore W2018856657C57879066 @default.
- W2018856657 hasConceptScore W2018856657C6648577 @default.
- W2018856657 hasConceptScore W2018856657C66938386 @default.
- W2018856657 hasIssue "02" @default.
- W2018856657 hasLocation W20188566571 @default.
- W2018856657 hasOpenAccess W2018856657 @default.
- W2018856657 hasPrimaryLocation W20188566571 @default.
- W2018856657 hasRelatedWork W2002759564 @default.
- W2018856657 hasRelatedWork W2064962216 @default.
- W2018856657 hasRelatedWork W2280635015 @default.
- W2018856657 hasRelatedWork W2337334436 @default.
- W2018856657 hasRelatedWork W2348538620 @default.
- W2018856657 hasRelatedWork W2378251929 @default.
- W2018856657 hasRelatedWork W2391987582 @default.
- W2018856657 hasRelatedWork W2412639952 @default.
- W2018856657 hasRelatedWork W4308697716 @default.
- W2018856657 hasRelatedWork W4313578581 @default.
- W2018856657 hasVolume "21" @default.
- W2018856657 isParatext "false" @default.
- W2018856657 isRetracted "false" @default.
- W2018856657 magId "2018856657" @default.
- W2018856657 workType "article" @default.