Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018902022> ?p ?o ?g. }
- W2018902022 endingPage "500" @default.
- W2018902022 startingPage "437" @default.
- W2018902022 abstract "The adsorption and reaction of both molecular and atomic flourine with the Si(100) surface has been examined under ultraligh vacuum conditions with supersonic molecular beam techniques, X-ray photoelectron spectroscopy (XPS), quadrupole mass spectrometry and low-energy ion scattering spectroscopy. Molecular flourine adsorbs dissociatively on the clean Si(100) surface with an initial (zero-coverage) probability of the adsorption of 0.46±0.02, which is essentially independent of both the incident beam energy (〈Etr=105−19 kcal mol−1) and surface temperature (Ts=120–600 K).The coverage-exposure relationship for F2 is characterized by an initial rapid phase of adsorption, which saturates at a coverage of θF≅1.5 monolayers (ML), followed by a much slower phase of adsorption, which does not saturate even at the exposure of 600 ML. For substrate temperatures of 300 K and above, the rapid phase of adsorption is described well by second-order Langmuir kinetics. However, below 300 K, trapping into a mobile (molecular) extrinsic presursor state on the chemisorbed adlayer becomes important, which results in an adsorption probability that is nearly independent of coverage at 120 K. The adsorption of atomic flourine is qualitatively different from molecular flourine. Although the initial probability of 3–4 ML. Temperature-programmed decomposition of silicon-flouride adlayers, produced by exposing the clean Si(100) surface a 120 K to a beam of flourine, yielded SiF2(g) and SiF4(g) as the only gas phase reaction products. The relative yield to these two gas phase reaction products dependes strongly on the initial coverage of the flourine adatoms-below ∼ ML, SiF2(g) in the major reaction product, whereas above ∼3 ML, the yield of SiF2(g) remains constant while that of SiF2(g) increases continuously. Above initial coverages of 2 ML, the thermal decomposition is terminated near 800 K by the removal of one monolayer of the silicon substrate in the form of SiF2(g). A detailed analysis of the decomposition for coverages of 3 ML revealed complex behavior, the kinetics depending sensitively on the initial coverage of flourin adatome. For example, for initial coverages of 1–1.3 ML, zero-order kinetics were found to apply as the coverage decreases from 1.0 to 0.3 ML. A qualitative assessment of the adlayer configuration following partial decomposition suggests that the thermal decomposition in the zero-order regime proceeds inhomogenously, leaving separate domains where the local coverage of flourine is either near saturation or zero. We suggest that the spatially inhomogenous decomposition is a manifestation of preferential reactivity at surface defects such as atomic steps. Investigation of the steady-state reaction of preferential reactivity at surface defects such as atomic steps. Investigation of the steady-state reaction between F2(g) and the Si(100) substrate for temperatures of 650–1200 K shows conclusively that flourine must be adsorbed dissociatively for the gasification reaction [production of SiF2(g)] to occur, e.i., a Languimuir-Hinshelwood mechanism dominates." @default.
- W2018902022 created "2016-06-24" @default.
- W2018902022 creator A5037682493 @default.
- W2018902022 creator A5061162466 @default.
- W2018902022 creator A5075426222 @default.
- W2018902022 date "1989-05-01" @default.
- W2018902022 modified "2023-10-12" @default.
- W2018902022 title "The adsorption and reaction of fluorine on the Si(100) surface" @default.
- W2018902022 cites W1857995127 @default.
- W2018902022 cites W1965148421 @default.
- W2018902022 cites W1967362661 @default.
- W2018902022 cites W1972135184 @default.
- W2018902022 cites W1973685322 @default.
- W2018902022 cites W1977163085 @default.
- W2018902022 cites W1982940977 @default.
- W2018902022 cites W1983157709 @default.
- W2018902022 cites W1983256684 @default.
- W2018902022 cites W1984968748 @default.
- W2018902022 cites W2001082945 @default.
- W2018902022 cites W2002463248 @default.
- W2018902022 cites W2003062639 @default.
- W2018902022 cites W2004047505 @default.
- W2018902022 cites W2005542564 @default.
- W2018902022 cites W2005803053 @default.
- W2018902022 cites W2006516752 @default.
- W2018902022 cites W2008267986 @default.
- W2018902022 cites W2009301896 @default.
- W2018902022 cites W2009542854 @default.
- W2018902022 cites W2011028190 @default.
- W2018902022 cites W2014821813 @default.
- W2018902022 cites W2018267321 @default.
- W2018902022 cites W2018400877 @default.
- W2018902022 cites W2021748168 @default.
- W2018902022 cites W2022511777 @default.
- W2018902022 cites W2027046135 @default.
- W2018902022 cites W2027709479 @default.
- W2018902022 cites W2038678064 @default.
- W2018902022 cites W2039284002 @default.
- W2018902022 cites W2040116395 @default.
- W2018902022 cites W2044405133 @default.
- W2018902022 cites W2053129052 @default.
- W2018902022 cites W2053570887 @default.
- W2018902022 cites W2059267578 @default.
- W2018902022 cites W2060003035 @default.
- W2018902022 cites W2063391689 @default.
- W2018902022 cites W2063553226 @default.
- W2018902022 cites W2065253127 @default.
- W2018902022 cites W2067514602 @default.
- W2018902022 cites W2069663013 @default.
- W2018902022 cites W2071330627 @default.
- W2018902022 cites W2072544063 @default.
- W2018902022 cites W2073676145 @default.
- W2018902022 cites W2074550430 @default.
- W2018902022 cites W2075288285 @default.
- W2018902022 cites W2075494161 @default.
- W2018902022 cites W2082925809 @default.
- W2018902022 cites W2083601382 @default.
- W2018902022 cites W2084917369 @default.
- W2018902022 cites W2086299917 @default.
- W2018902022 cites W2088374614 @default.
- W2018902022 cites W2088876493 @default.
- W2018902022 cites W2088976209 @default.
- W2018902022 cites W2090942910 @default.
- W2018902022 cites W2091934158 @default.
- W2018902022 cites W2093826356 @default.
- W2018902022 cites W2106603672 @default.
- W2018902022 cites W2112545855 @default.
- W2018902022 cites W2118003146 @default.
- W2018902022 cites W2121243657 @default.
- W2018902022 cites W2153116308 @default.
- W2018902022 cites W2305366549 @default.
- W2018902022 cites W2326303356 @default.
- W2018902022 cites W2332726214 @default.
- W2018902022 cites W4255566435 @default.
- W2018902022 cites W4361864895 @default.
- W2018902022 doi "https://doi.org/10.1016/0039-6028(89)90271-9" @default.
- W2018902022 hasPublicationYear "1989" @default.
- W2018902022 type Work @default.
- W2018902022 sameAs 2018902022 @default.
- W2018902022 citedByCount "79" @default.
- W2018902022 countsByYear W20189020222020 @default.
- W2018902022 countsByYear W20189020222021 @default.
- W2018902022 countsByYear W20189020222022 @default.
- W2018902022 countsByYear W20189020222023 @default.
- W2018902022 crossrefType "journal-article" @default.
- W2018902022 hasAuthorship W2018902022A5037682493 @default.
- W2018902022 hasAuthorship W2018902022A5061162466 @default.
- W2018902022 hasAuthorship W2018902022A5075426222 @default.
- W2018902022 hasConcept C111368507 @default.
- W2018902022 hasConcept C113196181 @default.
- W2018902022 hasConcept C115958267 @default.
- W2018902022 hasConcept C121332964 @default.
- W2018902022 hasConcept C127313418 @default.
- W2018902022 hasConcept C147789679 @default.
- W2018902022 hasConcept C150394285 @default.
- W2018902022 hasConcept C162711632 @default.
- W2018902022 hasConcept C175708663 @default.
- W2018902022 hasConcept C178790620 @default.