Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018912860> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2018912860 endingPage "11197" @default.
- W2018912860 startingPage "11186" @default.
- W2018912860 abstract "This study presents an application of artificial neural networks (ANN) for the prediction of repeated creep test results for polypropylene (PP) modified asphalt mixtures. Polypropylene fibers are used to modify the bituminous binder in order to improve the physical and mechanical properties of the resulting asphaltic mixture. Marshall specimens, fabricated with M-03 type polypropylene fibers at optimum bitumen content were tested using universal testing machine (UTM-5P) in order to determine their rheological/creep behavior under repeated loading. Different load values and loading patterns have been applied to the previously prepared specimens at a predetermined temperature. It has been shown that the addition of polypropylene fibers results in improved Marshall stabilities and decrease in the flow values, providing the increase of the service life of samples under repeated creep testing. The proposed ANN model uses the physical properties of standard Marshall specimens such as polypropylene type, specimen height, unit weight, voids in mineral aggregate, voids filled with asphalt, air voids and repeated creep test properties such as rest period and pulse counts in order to predict the accumulated strain values obtained at the end of mechanical tests. Moreover parametric analyses have been carried out. The results of parametric analyses were used to evaluate the accumulated strain of the Marshall specimens subjected to repeated load creep tests in a quite well manner." @default.
- W2018912860 created "2016-06-24" @default.
- W2018912860 creator A5024338611 @default.
- W2018912860 creator A5027623678 @default.
- W2018912860 creator A5037497196 @default.
- W2018912860 date "2009-10-01" @default.
- W2018912860 modified "2023-10-03" @default.
- W2018912860 title "Accumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks" @default.
- W2018912860 cites W1971746786 @default.
- W2018912860 cites W1983559085 @default.
- W2018912860 cites W1999730724 @default.
- W2018912860 cites W2009303670 @default.
- W2018912860 cites W2016174979 @default.
- W2018912860 cites W2030398544 @default.
- W2018912860 cites W2031703128 @default.
- W2018912860 cites W2039764797 @default.
- W2018912860 cites W2042128965 @default.
- W2018912860 cites W2046001255 @default.
- W2018912860 cites W2047214673 @default.
- W2018912860 cites W2052353011 @default.
- W2018912860 cites W2052817632 @default.
- W2018912860 cites W2059747099 @default.
- W2018912860 cites W2091543927 @default.
- W2018912860 cites W2128015883 @default.
- W2018912860 cites W2140133700 @default.
- W2018912860 cites W2150154527 @default.
- W2018912860 cites W2168510026 @default.
- W2018912860 doi "https://doi.org/10.1016/j.eswa.2009.02.089" @default.
- W2018912860 hasPublicationYear "2009" @default.
- W2018912860 type Work @default.
- W2018912860 sameAs 2018912860 @default.
- W2018912860 citedByCount "71" @default.
- W2018912860 countsByYear W20189128602012 @default.
- W2018912860 countsByYear W20189128602013 @default.
- W2018912860 countsByYear W20189128602014 @default.
- W2018912860 countsByYear W20189128602015 @default.
- W2018912860 countsByYear W20189128602016 @default.
- W2018912860 countsByYear W20189128602017 @default.
- W2018912860 countsByYear W20189128602018 @default.
- W2018912860 countsByYear W20189128602019 @default.
- W2018912860 countsByYear W20189128602020 @default.
- W2018912860 countsByYear W20189128602021 @default.
- W2018912860 countsByYear W20189128602022 @default.
- W2018912860 countsByYear W20189128602023 @default.
- W2018912860 crossrefType "journal-article" @default.
- W2018912860 hasAuthorship W2018912860A5024338611 @default.
- W2018912860 hasAuthorship W2018912860A5027623678 @default.
- W2018912860 hasAuthorship W2018912860A5037497196 @default.
- W2018912860 hasConcept C105795698 @default.
- W2018912860 hasConcept C112950240 @default.
- W2018912860 hasConcept C117251300 @default.
- W2018912860 hasConcept C149912024 @default.
- W2018912860 hasConcept C159985019 @default.
- W2018912860 hasConcept C168056786 @default.
- W2018912860 hasConcept C180478085 @default.
- W2018912860 hasConcept C192562407 @default.
- W2018912860 hasConcept C200990466 @default.
- W2018912860 hasConcept C2777973245 @default.
- W2018912860 hasConcept C33923547 @default.
- W2018912860 hasConceptScore W2018912860C105795698 @default.
- W2018912860 hasConceptScore W2018912860C112950240 @default.
- W2018912860 hasConceptScore W2018912860C117251300 @default.
- W2018912860 hasConceptScore W2018912860C149912024 @default.
- W2018912860 hasConceptScore W2018912860C159985019 @default.
- W2018912860 hasConceptScore W2018912860C168056786 @default.
- W2018912860 hasConceptScore W2018912860C180478085 @default.
- W2018912860 hasConceptScore W2018912860C192562407 @default.
- W2018912860 hasConceptScore W2018912860C200990466 @default.
- W2018912860 hasConceptScore W2018912860C2777973245 @default.
- W2018912860 hasConceptScore W2018912860C33923547 @default.
- W2018912860 hasIssue "8" @default.
- W2018912860 hasLocation W20189128601 @default.
- W2018912860 hasOpenAccess W2018912860 @default.
- W2018912860 hasPrimaryLocation W20189128601 @default.
- W2018912860 hasRelatedWork W2079852693 @default.
- W2018912860 hasRelatedWork W2323561316 @default.
- W2018912860 hasRelatedWork W2382159128 @default.
- W2018912860 hasRelatedWork W2393398406 @default.
- W2018912860 hasRelatedWork W2807061268 @default.
- W2018912860 hasRelatedWork W2945447015 @default.
- W2018912860 hasRelatedWork W2947669971 @default.
- W2018912860 hasRelatedWork W3132769162 @default.
- W2018912860 hasRelatedWork W3170610707 @default.
- W2018912860 hasRelatedWork W4313410775 @default.
- W2018912860 hasVolume "36" @default.
- W2018912860 isParatext "false" @default.
- W2018912860 isRetracted "false" @default.
- W2018912860 magId "2018912860" @default.
- W2018912860 workType "article" @default.