Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018935119> ?p ?o ?g. }
- W2018935119 endingPage "477" @default.
- W2018935119 startingPage "468" @default.
- W2018935119 abstract "High-valenttransition metal−oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal−oxo species by a sacrificial oxidant, and the activated transition metal−oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese− and iron−oxo intermediates. Irradiation of porphyrin−manganese(III) nitrates and chlorates or corrole−manganese(IV) chlorates resulted in homolytic cleavage of the O−X bonds in the ligands, whereas irradiation of porphyrin−manganese(III) perchlorates resulted in heterolytic cleavage of O−Cl bonds to give porphyrin−manganese(V)−oxo cations. Similar reactions of corrole− and porphyrin−iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand−iron(V)−oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)−oxo species, and even higher reactivities of the putative iron(V)−oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 × 103 M−1 s−1 for a corrole−iron(V)−oxo species and 1.6 × 106 M−1 s−1 for the putative tetramesitylporphyrin−iron(V)−oxo perchlorate species. The latter rate constant is 25 000 times larger than that for oxidation of cis-cyclooctene by iron(IV)−oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)−oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin−iron(V)−oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme−thiolate enzymes that are capable of oxidizing unactivated carbon−hydrogen bonds in substrates so rapidly that iron−oxo intermediates have not been detected under physiological conditions." @default.
- W2018935119 created "2016-06-24" @default.
- W2018935119 creator A5040223477 @default.
- W2018935119 creator A5065037360 @default.
- W2018935119 date "2008-02-16" @default.
- W2018935119 modified "2023-10-16" @default.
- W2018935119 title "Laser Flash Photolysis Generation of High-Valent Transition Metal−Oxo Species: Insights from Kinetic Studies in Real Time" @default.
- W2018935119 cites W1943768787 @default.
- W2018935119 cites W1967700647 @default.
- W2018935119 cites W1970522028 @default.
- W2018935119 cites W1975262546 @default.
- W2018935119 cites W1976002718 @default.
- W2018935119 cites W1978802654 @default.
- W2018935119 cites W1979931746 @default.
- W2018935119 cites W1981704948 @default.
- W2018935119 cites W1983346165 @default.
- W2018935119 cites W1984728369 @default.
- W2018935119 cites W1987255235 @default.
- W2018935119 cites W1987575621 @default.
- W2018935119 cites W1988307277 @default.
- W2018935119 cites W1992413871 @default.
- W2018935119 cites W1998883194 @default.
- W2018935119 cites W2000968981 @default.
- W2018935119 cites W2001127597 @default.
- W2018935119 cites W2003092651 @default.
- W2018935119 cites W2006192558 @default.
- W2018935119 cites W2008396867 @default.
- W2018935119 cites W2010486872 @default.
- W2018935119 cites W2016429779 @default.
- W2018935119 cites W2017596140 @default.
- W2018935119 cites W2020078919 @default.
- W2018935119 cites W2024195093 @default.
- W2018935119 cites W2025283388 @default.
- W2018935119 cites W2028177658 @default.
- W2018935119 cites W2029442289 @default.
- W2018935119 cites W2032579926 @default.
- W2018935119 cites W2036646206 @default.
- W2018935119 cites W2040299058 @default.
- W2018935119 cites W2044589821 @default.
- W2018935119 cites W2048414598 @default.
- W2018935119 cites W2053172978 @default.
- W2018935119 cites W2053472539 @default.
- W2018935119 cites W2057763027 @default.
- W2018935119 cites W2063619325 @default.
- W2018935119 cites W2064553003 @default.
- W2018935119 cites W2069982397 @default.
- W2018935119 cites W2073356400 @default.
- W2018935119 cites W2075491748 @default.
- W2018935119 cites W2077621515 @default.
- W2018935119 cites W2080910963 @default.
- W2018935119 cites W2084052917 @default.
- W2018935119 cites W2085831526 @default.
- W2018935119 cites W2090388453 @default.
- W2018935119 cites W2093377100 @default.
- W2018935119 cites W2127713131 @default.
- W2018935119 cites W2170346184 @default.
- W2018935119 cites W2331358663 @default.
- W2018935119 cites W2478006315 @default.
- W2018935119 cites W2499289325 @default.
- W2018935119 cites W2952055982 @default.
- W2018935119 cites W2952193779 @default.
- W2018935119 cites W4248144747 @default.
- W2018935119 cites W599362358 @default.
- W2018935119 doi "https://doi.org/10.1021/ar700175k" @default.
- W2018935119 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2907137" @default.
- W2018935119 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18278877" @default.
- W2018935119 hasPublicationYear "2008" @default.
- W2018935119 type Work @default.
- W2018935119 sameAs 2018935119 @default.
- W2018935119 citedByCount "124" @default.
- W2018935119 countsByYear W20189351192012 @default.
- W2018935119 countsByYear W20189351192013 @default.
- W2018935119 countsByYear W20189351192014 @default.
- W2018935119 countsByYear W20189351192015 @default.
- W2018935119 countsByYear W20189351192016 @default.
- W2018935119 countsByYear W20189351192017 @default.
- W2018935119 countsByYear W20189351192018 @default.
- W2018935119 countsByYear W20189351192019 @default.
- W2018935119 countsByYear W20189351192020 @default.
- W2018935119 countsByYear W20189351192021 @default.
- W2018935119 countsByYear W20189351192022 @default.
- W2018935119 countsByYear W20189351192023 @default.
- W2018935119 crossrefType "journal-article" @default.
- W2018935119 hasAuthorship W2018935119A5040223477 @default.
- W2018935119 hasAuthorship W2018935119A5065037360 @default.
- W2018935119 hasBestOaLocation W20189351192 @default.
- W2018935119 hasConcept C106773901 @default.
- W2018935119 hasConcept C121332964 @default.
- W2018935119 hasConcept C13472781 @default.
- W2018935119 hasConcept C142724271 @default.
- W2018935119 hasConcept C148898269 @default.
- W2018935119 hasConcept C161790260 @default.
- W2018935119 hasConcept C178790620 @default.
- W2018935119 hasConcept C179104552 @default.
- W2018935119 hasConcept C185592680 @default.
- W2018935119 hasConcept C192937433 @default.
- W2018935119 hasConcept C204787440 @default.
- W2018935119 hasConcept C2776910235 @default.