Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018938122> ?p ?o ?g. }
- W2018938122 endingPage "713" @default.
- W2018938122 startingPage "703" @default.
- W2018938122 abstract "The rapid development of 3D digital technology has led to an increasing volume of 3D model data. In addressing the management of such large scale data, effective content-based 3D model retrieval and recognition methods are highly desirable. In 3D model retrieval and recognition tasks, the distance measure between two 3D models plays an important role. In this paper, we propose a novel 3D model retrieval and recognition method that employs both a distance histogram and 3D moment invariants as features that are invariant to 3D object scaling, translation, and rotation. Disjoint information is used to measure the distance between the feature histograms, and the Euclidean distance is applied in calculating the distance between two moment features. These measures are then combined as the 3D model distance. Using this distance measure, the relationships between all 3D models in the dataset are formulated as a graph structure. A semi-supervised learning process is then conducted to estimate the relevance among the 3D models, and this is employed for 3D model retrieval and classification. To evaluate the effectiveness of the proposed method, we conduct experiments on two datasets. Experimental results and a comparison with state-of-the-art methods demonstrate that the proposed method achieves improved performance for 3D model retrieval and recognition tasks." @default.
- W2018938122 created "2016-06-24" @default.
- W2018938122 creator A5072833759 @default.
- W2018938122 creator A5080344490 @default.
- W2018938122 creator A5084417488 @default.
- W2018938122 creator A5089481275 @default.
- W2018938122 date "2014-10-01" @default.
- W2018938122 modified "2023-09-24" @default.
- W2018938122 title "3D model retrieval and classification by semi-supervised learning with content-based similarity" @default.
- W2018938122 cites W1966859547 @default.
- W2018938122 cites W1967530176 @default.
- W2018938122 cites W1970493565 @default.
- W2018938122 cites W1986004030 @default.
- W2018938122 cites W1992531501 @default.
- W2018938122 cites W2004030129 @default.
- W2018938122 cites W2012673871 @default.
- W2018938122 cites W2014854862 @default.
- W2018938122 cites W2015725301 @default.
- W2018938122 cites W2019055782 @default.
- W2018938122 cites W2021122545 @default.
- W2018938122 cites W2021348965 @default.
- W2018938122 cites W2024082504 @default.
- W2018938122 cites W2024394872 @default.
- W2018938122 cites W2024618054 @default.
- W2018938122 cites W2028248716 @default.
- W2018938122 cites W2032355985 @default.
- W2018938122 cites W2034785770 @default.
- W2018938122 cites W2048997552 @default.
- W2018938122 cites W2068078373 @default.
- W2018938122 cites W2069870183 @default.
- W2018938122 cites W2070704467 @default.
- W2018938122 cites W2073416270 @default.
- W2018938122 cites W2073474519 @default.
- W2018938122 cites W2079089821 @default.
- W2018938122 cites W2085509847 @default.
- W2018938122 cites W2091089627 @default.
- W2018938122 cites W2094588629 @default.
- W2018938122 cites W2097955329 @default.
- W2018938122 cites W2101025736 @default.
- W2018938122 cites W2116466193 @default.
- W2018938122 cites W2123737024 @default.
- W2018938122 cites W2133343739 @default.
- W2018938122 cites W2137914836 @default.
- W2018938122 cites W2139827522 @default.
- W2018938122 cites W2142634143 @default.
- W2018938122 cites W2152856313 @default.
- W2018938122 cites W2158141932 @default.
- W2018938122 cites W2169371923 @default.
- W2018938122 cites W2295332248 @default.
- W2018938122 cites W4246266270 @default.
- W2018938122 doi "https://doi.org/10.1016/j.ins.2014.03.079" @default.
- W2018938122 hasPublicationYear "2014" @default.
- W2018938122 type Work @default.
- W2018938122 sameAs 2018938122 @default.
- W2018938122 citedByCount "43" @default.
- W2018938122 countsByYear W20189381222015 @default.
- W2018938122 countsByYear W20189381222016 @default.
- W2018938122 countsByYear W20189381222017 @default.
- W2018938122 countsByYear W20189381222018 @default.
- W2018938122 countsByYear W20189381222019 @default.
- W2018938122 countsByYear W20189381222020 @default.
- W2018938122 countsByYear W20189381222021 @default.
- W2018938122 countsByYear W20189381222022 @default.
- W2018938122 crossrefType "journal-article" @default.
- W2018938122 hasAuthorship W2018938122A5072833759 @default.
- W2018938122 hasAuthorship W2018938122A5080344490 @default.
- W2018938122 hasAuthorship W2018938122A5084417488 @default.
- W2018938122 hasAuthorship W2018938122A5089481275 @default.
- W2018938122 hasConcept C103278499 @default.
- W2018938122 hasConcept C115961682 @default.
- W2018938122 hasConcept C120174047 @default.
- W2018938122 hasConcept C124101348 @default.
- W2018938122 hasConcept C153180895 @default.
- W2018938122 hasConcept C154945302 @default.
- W2018938122 hasConcept C2639959 @default.
- W2018938122 hasConcept C2776517306 @default.
- W2018938122 hasConcept C41008148 @default.
- W2018938122 hasConcept C53533937 @default.
- W2018938122 hasConceptScore W2018938122C103278499 @default.
- W2018938122 hasConceptScore W2018938122C115961682 @default.
- W2018938122 hasConceptScore W2018938122C120174047 @default.
- W2018938122 hasConceptScore W2018938122C124101348 @default.
- W2018938122 hasConceptScore W2018938122C153180895 @default.
- W2018938122 hasConceptScore W2018938122C154945302 @default.
- W2018938122 hasConceptScore W2018938122C2639959 @default.
- W2018938122 hasConceptScore W2018938122C2776517306 @default.
- W2018938122 hasConceptScore W2018938122C41008148 @default.
- W2018938122 hasConceptScore W2018938122C53533937 @default.
- W2018938122 hasLocation W20189381221 @default.
- W2018938122 hasOpenAccess W2018938122 @default.
- W2018938122 hasPrimaryLocation W20189381221 @default.
- W2018938122 hasRelatedWork W1642991110 @default.
- W2018938122 hasRelatedWork W1981015757 @default.
- W2018938122 hasRelatedWork W2020613036 @default.
- W2018938122 hasRelatedWork W2026819798 @default.
- W2018938122 hasRelatedWork W2218970124 @default.
- W2018938122 hasRelatedWork W2254589950 @default.
- W2018938122 hasRelatedWork W2588629527 @default.