Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018938414> ?p ?o ?g. }
- W2018938414 abstract "Thedistance transform(DT) is an image computation tool which can be used to extract the information about the shape and the position of the foreground pixels relative to each other. It converts a binary image into a grey-level image, where each pixel has a value corresponding to the distance to the nearest foreground pixel. The time complexity for computing the distance transform is fully dependent on the different distance metrics. Especially, the more exact the distance transform is, the worse execution time reached will be. Nowadays, quite often thousands of images are processed in a limited time. It seems quite impossible for a sequential computer to do such a computation for the distance transform in real time. In order to provide efficient distance transform computation, it is considerably desirable to develop a parallel algorithm for this operation. In this paper, based on the diagonal propagation approach, we first provide anO(N2) time sequential algorithm to compute thechessboard distance transform(CDT) of anN×Nimage, which is a DT using the chessboard distance metrics. Based on the proposed sequential algorithm, the CDT of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. Following the mapping as proposed by Lee and Horng, the algorithm for the medial axis transform is also efficiently derived. The medial axis transform of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. The proposed parallel algorithms are composed of a set of prefix operations. In each prefix operation phase, only increase (add-one) operation and minimum operation are employed. So, the algorithms are especially efficient in practical applications." @default.
- W2018938414 created "2016-06-24" @default.
- W2018938414 creator A5004773095 @default.
- W2018938414 creator A5038219098 @default.
- W2018938414 date "1999-03-01" @default.
- W2018938414 modified "2023-10-18" @default.
- W2018938414 title "Optimal Computing the Chessboard Distance Transform on Parallel Processing Systems" @default.
- W2018938414 cites W1802819504 @default.
- W2018938414 cites W1872549822 @default.
- W2018938414 cites W1973965874 @default.
- W2018938414 cites W1979405677 @default.
- W2018938414 cites W1981953529 @default.
- W2018938414 cites W1987490142 @default.
- W2018938414 cites W1989915986 @default.
- W2018938414 cites W1993391455 @default.
- W2018938414 cites W1995025046 @default.
- W2018938414 cites W2003990169 @default.
- W2018938414 cites W2009427280 @default.
- W2018938414 cites W2011723506 @default.
- W2018938414 cites W2030919400 @default.
- W2018938414 cites W2032338774 @default.
- W2018938414 cites W2057886711 @default.
- W2018938414 cites W2059245171 @default.
- W2018938414 cites W2063159200 @default.
- W2018938414 cites W2069537876 @default.
- W2018938414 cites W2076567676 @default.
- W2018938414 cites W2088672213 @default.
- W2018938414 cites W2094757789 @default.
- W2018938414 cites W2113611946 @default.
- W2018938414 cites W2119628172 @default.
- W2018938414 cites W2136052880 @default.
- W2018938414 cites W2143462372 @default.
- W2018938414 cites W2151165286 @default.
- W2018938414 cites W2158240273 @default.
- W2018938414 cites W2165531426 @default.
- W2018938414 cites W2036210874 @default.
- W2018938414 doi "https://doi.org/10.1006/cviu.1998.0741" @default.
- W2018938414 hasPublicationYear "1999" @default.
- W2018938414 type Work @default.
- W2018938414 sameAs 2018938414 @default.
- W2018938414 citedByCount "9" @default.
- W2018938414 countsByYear W20189384142015 @default.
- W2018938414 countsByYear W20189384142017 @default.
- W2018938414 countsByYear W20189384142022 @default.
- W2018938414 crossrefType "journal-article" @default.
- W2018938414 hasAuthorship W2018938414A5004773095 @default.
- W2018938414 hasAuthorship W2018938414A5038219098 @default.
- W2018938414 hasConcept C11413529 @default.
- W2018938414 hasConcept C115961682 @default.
- W2018938414 hasConcept C120373497 @default.
- W2018938414 hasConcept C130367717 @default.
- W2018938414 hasConcept C154945302 @default.
- W2018938414 hasConcept C160633673 @default.
- W2018938414 hasConcept C173608175 @default.
- W2018938414 hasConcept C193828747 @default.
- W2018938414 hasConcept C2524010 @default.
- W2018938414 hasConcept C311688 @default.
- W2018938414 hasConcept C33923547 @default.
- W2018938414 hasConcept C41008148 @default.
- W2018938414 hasConcept C45374587 @default.
- W2018938414 hasConcept C48372109 @default.
- W2018938414 hasConcept C50820777 @default.
- W2018938414 hasConcept C73621898 @default.
- W2018938414 hasConcept C9417928 @default.
- W2018938414 hasConcept C94375191 @default.
- W2018938414 hasConceptScore W2018938414C11413529 @default.
- W2018938414 hasConceptScore W2018938414C115961682 @default.
- W2018938414 hasConceptScore W2018938414C120373497 @default.
- W2018938414 hasConceptScore W2018938414C130367717 @default.
- W2018938414 hasConceptScore W2018938414C154945302 @default.
- W2018938414 hasConceptScore W2018938414C160633673 @default.
- W2018938414 hasConceptScore W2018938414C173608175 @default.
- W2018938414 hasConceptScore W2018938414C193828747 @default.
- W2018938414 hasConceptScore W2018938414C2524010 @default.
- W2018938414 hasConceptScore W2018938414C311688 @default.
- W2018938414 hasConceptScore W2018938414C33923547 @default.
- W2018938414 hasConceptScore W2018938414C41008148 @default.
- W2018938414 hasConceptScore W2018938414C45374587 @default.
- W2018938414 hasConceptScore W2018938414C48372109 @default.
- W2018938414 hasConceptScore W2018938414C50820777 @default.
- W2018938414 hasConceptScore W2018938414C73621898 @default.
- W2018938414 hasConceptScore W2018938414C9417928 @default.
- W2018938414 hasConceptScore W2018938414C94375191 @default.
- W2018938414 hasLocation W20189384141 @default.
- W2018938414 hasOpenAccess W2018938414 @default.
- W2018938414 hasPrimaryLocation W20189384141 @default.
- W2018938414 hasRelatedWork W1484457276 @default.
- W2018938414 hasRelatedWork W1498432395 @default.
- W2018938414 hasRelatedWork W1547233734 @default.
- W2018938414 hasRelatedWork W173730009 @default.
- W2018938414 hasRelatedWork W1923292340 @default.
- W2018938414 hasRelatedWork W1981326876 @default.
- W2018938414 hasRelatedWork W1986372250 @default.
- W2018938414 hasRelatedWork W1986754491 @default.
- W2018938414 hasRelatedWork W1990988357 @default.
- W2018938414 hasRelatedWork W2012447162 @default.
- W2018938414 hasRelatedWork W2013535377 @default.
- W2018938414 hasRelatedWork W2016778096 @default.
- W2018938414 hasRelatedWork W2034282023 @default.
- W2018938414 hasRelatedWork W2041703479 @default.