Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018972063> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2018972063 endingPage "270" @default.
- W2018972063 startingPage "251" @default.
- W2018972063 abstract "We present three new families of fast algorithms for classical potential theory, based on Ewald summation and fast transforms of Gaussians and Fourier series. Ewald summation separates the Green function for a cube into a high-frequency localized part and a rapidly-converging Fourier series. Each part can then be evaluated efficiently with appropriate fast transform algorithms. Our algorithms are naturally suited to the use of Green functions with boundary conditions imposed on the boundary of a cube, rather than free-space Green functions. Our first algorithm evaluates classical layer potentials on the boundary of a d-dimensional domain, with d equal to two or three. The quadrature error is O(hm) +ε, where h is the mesh size on the boundary and m is the order of quadrature used. The algorithm evaluates the discretized potential using N elements at O(N) points in O(N log N) arithmetic operations. The constant in O(N log N) depends logarithmically on the desired error tolerance. Our second scheme evaluates a layer potential on the domain itself, with the same accuracy. It produces Md values using N boundary elements in O((N + Md) log M) arithmetic operations. Our third method evaluates a discrete sum of values of the Green function, of the type which occur in particle methods. It attains error ϵ at a cost O(Na log N), where a = 2(1 + Dd) and D is the Hausdorff dimension of the set where the sources concentrate in the limit N √ ∞. Thus it is O(N log N) when the sources do not cluster too much and close to O(N log N) in the important practical case when the points are uniformly distributed over a hypersurface. We also sketch an O(N log N) algorithm based on special functions. Two-dimensional numerical results are presented for all three algorithms. Layer potentials are evaluated to second-order accuracy, in times which exhibit considerable speedups even over a reasonably sophisticated direct calculation. Discrete sum calculations are speeded up astronomically; our algorithm reduces the CPU time required for a calculation with 40,000 points from six months to one hour." @default.
- W2018972063 created "2016-06-24" @default.
- W2018972063 creator A5086443955 @default.
- W2018972063 date "1992-04-01" @default.
- W2018972063 modified "2023-09-24" @default.
- W2018972063 title "Fast potential theory. II. layer potentials and discrete sums" @default.
- W2018972063 cites W1982115588 @default.
- W2018972063 cites W1988519401 @default.
- W2018972063 cites W2000857334 @default.
- W2018972063 cites W2001676859 @default.
- W2018972063 cites W2019517543 @default.
- W2018972063 cites W2029316406 @default.
- W2018972063 cites W2062998491 @default.
- W2018972063 cites W2066429811 @default.
- W2018972063 cites W2070966814 @default.
- W2018972063 cites W2075184639 @default.
- W2018972063 cites W2077292489 @default.
- W2018972063 cites W2077852080 @default.
- W2018972063 cites W2087404487 @default.
- W2018972063 cites W2094322964 @default.
- W2018972063 cites W2160431995 @default.
- W2018972063 cites W2315142130 @default.
- W2018972063 doi "https://doi.org/10.1016/0021-9991(92)90206-e" @default.
- W2018972063 hasPublicationYear "1992" @default.
- W2018972063 type Work @default.
- W2018972063 sameAs 2018972063 @default.
- W2018972063 citedByCount "41" @default.
- W2018972063 countsByYear W20189720632012 @default.
- W2018972063 countsByYear W20189720632015 @default.
- W2018972063 countsByYear W20189720632018 @default.
- W2018972063 countsByYear W20189720632019 @default.
- W2018972063 crossrefType "journal-article" @default.
- W2018972063 hasAuthorship W2018972063A5086443955 @default.
- W2018972063 hasBestOaLocation W20189720631 @default.
- W2018972063 hasConcept C11413529 @default.
- W2018972063 hasConcept C114614502 @default.
- W2018972063 hasConcept C118615104 @default.
- W2018972063 hasConcept C120665830 @default.
- W2018972063 hasConcept C121332964 @default.
- W2018972063 hasConcept C134306372 @default.
- W2018972063 hasConcept C14036430 @default.
- W2018972063 hasConcept C143551052 @default.
- W2018972063 hasConcept C33676613 @default.
- W2018972063 hasConcept C33923547 @default.
- W2018972063 hasConcept C59593255 @default.
- W2018972063 hasConcept C60432849 @default.
- W2018972063 hasConcept C62354387 @default.
- W2018972063 hasConcept C62520636 @default.
- W2018972063 hasConcept C62869609 @default.
- W2018972063 hasConcept C73000952 @default.
- W2018972063 hasConcept C75172450 @default.
- W2018972063 hasConcept C78458016 @default.
- W2018972063 hasConcept C86803240 @default.
- W2018972063 hasConceptScore W2018972063C11413529 @default.
- W2018972063 hasConceptScore W2018972063C114614502 @default.
- W2018972063 hasConceptScore W2018972063C118615104 @default.
- W2018972063 hasConceptScore W2018972063C120665830 @default.
- W2018972063 hasConceptScore W2018972063C121332964 @default.
- W2018972063 hasConceptScore W2018972063C134306372 @default.
- W2018972063 hasConceptScore W2018972063C14036430 @default.
- W2018972063 hasConceptScore W2018972063C143551052 @default.
- W2018972063 hasConceptScore W2018972063C33676613 @default.
- W2018972063 hasConceptScore W2018972063C33923547 @default.
- W2018972063 hasConceptScore W2018972063C59593255 @default.
- W2018972063 hasConceptScore W2018972063C60432849 @default.
- W2018972063 hasConceptScore W2018972063C62354387 @default.
- W2018972063 hasConceptScore W2018972063C62520636 @default.
- W2018972063 hasConceptScore W2018972063C62869609 @default.
- W2018972063 hasConceptScore W2018972063C73000952 @default.
- W2018972063 hasConceptScore W2018972063C75172450 @default.
- W2018972063 hasConceptScore W2018972063C78458016 @default.
- W2018972063 hasConceptScore W2018972063C86803240 @default.
- W2018972063 hasIssue "2" @default.
- W2018972063 hasLocation W20189720631 @default.
- W2018972063 hasLocation W20189720632 @default.
- W2018972063 hasOpenAccess W2018972063 @default.
- W2018972063 hasPrimaryLocation W20189720631 @default.
- W2018972063 hasRelatedWork W1964417243 @default.
- W2018972063 hasRelatedWork W1979076981 @default.
- W2018972063 hasRelatedWork W1999996641 @default.
- W2018972063 hasRelatedWork W2090537589 @default.
- W2018972063 hasRelatedWork W2548669339 @default.
- W2018972063 hasRelatedWork W3025707945 @default.
- W2018972063 hasRelatedWork W3215119378 @default.
- W2018972063 hasRelatedWork W4220826729 @default.
- W2018972063 hasRelatedWork W4287778807 @default.
- W2018972063 hasRelatedWork W1963689776 @default.
- W2018972063 hasVolume "99" @default.
- W2018972063 isParatext "false" @default.
- W2018972063 isRetracted "false" @default.
- W2018972063 magId "2018972063" @default.
- W2018972063 workType "article" @default.