Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018979850> ?p ?o ?g. }
- W2018979850 abstract "Customer churn analysis and prediction play an important role in customer relationship management and improve benefit of enterprise. According to the bank's customer churn data which is large scale and imbalance, this paper presented a support vector machine model to predict customer churn. The method was compared with artificial neural network, decision tree, logistic regression and naive Bayesian classifier regarding customer churn prediction for a commercial bank's VIP customers. It is found that the method has the best accuracy rate, hit rate, covering rate and lift coefficient, and provides an effective measurement for bank's customer churn prediction." @default.
- W2018979850 created "2016-06-24" @default.
- W2018979850 creator A5018427469 @default.
- W2018979850 creator A5082392473 @default.
- W2018979850 date "2008-10-01" @default.
- W2018979850 modified "2023-09-26" @default.
- W2018979850 title "Bank Customer Churn Prediction Based on Support Vector Machine: Taking a Commercial Bank's VIP Customer Churn as the Example" @default.
- W2018979850 cites W1479841355 @default.
- W2018979850 cites W1553407966 @default.
- W2018979850 cites W1564638706 @default.
- W2018979850 cites W1963503733 @default.
- W2018979850 cites W1966912369 @default.
- W2018979850 cites W1998221850 @default.
- W2018979850 cites W2009825703 @default.
- W2018979850 cites W2017278588 @default.
- W2018979850 cites W2020676370 @default.
- W2018979850 cites W2066831643 @default.
- W2018979850 cites W2071370957 @default.
- W2018979850 cites W2073764603 @default.
- W2018979850 cites W2076261257 @default.
- W2018979850 cites W2090018524 @default.
- W2018979850 cites W2108995755 @default.
- W2018979850 cites W2109302642 @default.
- W2018979850 cites W2119821739 @default.
- W2018979850 cites W2130583772 @default.
- W2018979850 cites W2134673975 @default.
- W2018979850 cites W2137217447 @default.
- W2018979850 cites W2142193462 @default.
- W2018979850 cites W2142752589 @default.
- W2018979850 cites W2145809255 @default.
- W2018979850 cites W2156909104 @default.
- W2018979850 cites W2158994553 @default.
- W2018979850 cites W2161298931 @default.
- W2018979850 doi "https://doi.org/10.1109/wicom.2008.2509" @default.
- W2018979850 hasPublicationYear "2008" @default.
- W2018979850 type Work @default.
- W2018979850 sameAs 2018979850 @default.
- W2018979850 citedByCount "17" @default.
- W2018979850 countsByYear W20189798502012 @default.
- W2018979850 countsByYear W20189798502014 @default.
- W2018979850 countsByYear W20189798502015 @default.
- W2018979850 countsByYear W20189798502016 @default.
- W2018979850 countsByYear W20189798502017 @default.
- W2018979850 countsByYear W20189798502019 @default.
- W2018979850 countsByYear W20189798502020 @default.
- W2018979850 countsByYear W20189798502021 @default.
- W2018979850 crossrefType "proceedings-article" @default.
- W2018979850 hasAuthorship W2018979850A5018427469 @default.
- W2018979850 hasAuthorship W2018979850A5082392473 @default.
- W2018979850 hasConcept C101276457 @default.
- W2018979850 hasConcept C119857082 @default.
- W2018979850 hasConcept C12267149 @default.
- W2018979850 hasConcept C124101348 @default.
- W2018979850 hasConcept C139002025 @default.
- W2018979850 hasConcept C140781008 @default.
- W2018979850 hasConcept C144133560 @default.
- W2018979850 hasConcept C151956035 @default.
- W2018979850 hasConcept C154945302 @default.
- W2018979850 hasConcept C162853370 @default.
- W2018979850 hasConcept C2780378061 @default.
- W2018979850 hasConcept C41008148 @default.
- W2018979850 hasConcept C50644808 @default.
- W2018979850 hasConcept C57660159 @default.
- W2018979850 hasConcept C77088390 @default.
- W2018979850 hasConcept C84525736 @default.
- W2018979850 hasConcept C98825075 @default.
- W2018979850 hasConceptScore W2018979850C101276457 @default.
- W2018979850 hasConceptScore W2018979850C119857082 @default.
- W2018979850 hasConceptScore W2018979850C12267149 @default.
- W2018979850 hasConceptScore W2018979850C124101348 @default.
- W2018979850 hasConceptScore W2018979850C139002025 @default.
- W2018979850 hasConceptScore W2018979850C140781008 @default.
- W2018979850 hasConceptScore W2018979850C144133560 @default.
- W2018979850 hasConceptScore W2018979850C151956035 @default.
- W2018979850 hasConceptScore W2018979850C154945302 @default.
- W2018979850 hasConceptScore W2018979850C162853370 @default.
- W2018979850 hasConceptScore W2018979850C2780378061 @default.
- W2018979850 hasConceptScore W2018979850C41008148 @default.
- W2018979850 hasConceptScore W2018979850C50644808 @default.
- W2018979850 hasConceptScore W2018979850C57660159 @default.
- W2018979850 hasConceptScore W2018979850C77088390 @default.
- W2018979850 hasConceptScore W2018979850C84525736 @default.
- W2018979850 hasConceptScore W2018979850C98825075 @default.
- W2018979850 hasLocation W20189798501 @default.
- W2018979850 hasOpenAccess W2018979850 @default.
- W2018979850 hasPrimaryLocation W20189798501 @default.
- W2018979850 hasRelatedWork W1874894429 @default.
- W2018979850 hasRelatedWork W2019744176 @default.
- W2018979850 hasRelatedWork W2048244076 @default.
- W2018979850 hasRelatedWork W2061798849 @default.
- W2018979850 hasRelatedWork W2089215879 @default.
- W2018979850 hasRelatedWork W2117849868 @default.
- W2018979850 hasRelatedWork W2161634631 @default.
- W2018979850 hasRelatedWork W2162405986 @default.
- W2018979850 hasRelatedWork W2185157108 @default.
- W2018979850 hasRelatedWork W2356980380 @default.
- W2018979850 hasRelatedWork W2357685283 @default.
- W2018979850 hasRelatedWork W2366155792 @default.
- W2018979850 hasRelatedWork W2366935731 @default.
- W2018979850 hasRelatedWork W2368363016 @default.