Matches in SemOpenAlex for { <https://semopenalex.org/work/W2018984101> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2018984101 endingPage "5160" @default.
- W2018984101 startingPage "5154" @default.
- W2018984101 abstract "The effect of pressure gradients that develop in diffusion systems consisting of particulates dispersed in a continuous fluid is considered. It is shown that the gradient of chemical potential which drives the diffusion flux induces a pressure gradient that opposes this flux. This effect, which exists in addition to the induced bulk flow, is expressed in terms of a diffusive buoyancy force (DBF). For dispersions consisting of monodisperse particulates in a single-component fluid, the net driving force is the negative product of the volume fraction occupied by the fluid and the gradient of the chemical potential of the particulates. For polydisperse particulates, the DBF is the negative product of the total volume fraction occupied by the particulates and the expectation of gradient of their chemical potential. The joint effect of the DBF and the hydrodynamic hindrance is expressed in terms of a concentration-dependent diffusion coefficient. It is shown that the effect of the DBF yields a fundamental diffusion coefficient Dφ, which is the product of the volume fraction occupied by the fluid 1−φ, and the Stokes–Einstein diffusion coefficient D. The intrinsic diffusion coefficient, which is defined as the product of 1−φ and Dφ, thus becomes the product of the square of 1−φ and D. At steady state the concentration profile cannot be analytically linear unless the buoyancy and hydrodynamic effects are offset by changes of size, energy per particulate and the activity coefficient. Finally, implications regarding the diffusion equation and effects of combined fields on the DBF are considered." @default.
- W2018984101 created "2016-06-24" @default.
- W2018984101 creator A5024690162 @default.
- W2018984101 date "1994-11-01" @default.
- W2018984101 modified "2023-09-25" @default.
- W2018984101 title "Diffusive buoyancy force and concentration‐dependent diffusivities" @default.
- W2018984101 cites W1981426496 @default.
- W2018984101 cites W1989185759 @default.
- W2018984101 cites W2006661518 @default.
- W2018984101 cites W2012168662 @default.
- W2018984101 cites W2028744395 @default.
- W2018984101 cites W2052076627 @default.
- W2018984101 cites W2055330798 @default.
- W2018984101 cites W2060095522 @default.
- W2018984101 cites W2074124326 @default.
- W2018984101 cites W2115733838 @default.
- W2018984101 cites W2315281932 @default.
- W2018984101 doi "https://doi.org/10.1063/1.357230" @default.
- W2018984101 hasPublicationYear "1994" @default.
- W2018984101 type Work @default.
- W2018984101 sameAs 2018984101 @default.
- W2018984101 citedByCount "2" @default.
- W2018984101 countsByYear W20189841012019 @default.
- W2018984101 crossrefType "journal-article" @default.
- W2018984101 hasAuthorship W2018984101A5024690162 @default.
- W2018984101 hasConcept C121332964 @default.
- W2018984101 hasConcept C162324750 @default.
- W2018984101 hasConcept C176217482 @default.
- W2018984101 hasConcept C178790620 @default.
- W2018984101 hasConcept C185592680 @default.
- W2018984101 hasConcept C21547014 @default.
- W2018984101 hasConcept C24245907 @default.
- W2018984101 hasConcept C538625479 @default.
- W2018984101 hasConcept C57736034 @default.
- W2018984101 hasConcept C57879066 @default.
- W2018984101 hasConcept C65590680 @default.
- W2018984101 hasConcept C68709404 @default.
- W2018984101 hasConcept C69357855 @default.
- W2018984101 hasConcept C97355855 @default.
- W2018984101 hasConceptScore W2018984101C121332964 @default.
- W2018984101 hasConceptScore W2018984101C162324750 @default.
- W2018984101 hasConceptScore W2018984101C176217482 @default.
- W2018984101 hasConceptScore W2018984101C178790620 @default.
- W2018984101 hasConceptScore W2018984101C185592680 @default.
- W2018984101 hasConceptScore W2018984101C21547014 @default.
- W2018984101 hasConceptScore W2018984101C24245907 @default.
- W2018984101 hasConceptScore W2018984101C538625479 @default.
- W2018984101 hasConceptScore W2018984101C57736034 @default.
- W2018984101 hasConceptScore W2018984101C57879066 @default.
- W2018984101 hasConceptScore W2018984101C65590680 @default.
- W2018984101 hasConceptScore W2018984101C68709404 @default.
- W2018984101 hasConceptScore W2018984101C69357855 @default.
- W2018984101 hasConceptScore W2018984101C97355855 @default.
- W2018984101 hasIssue "9" @default.
- W2018984101 hasLocation W20189841011 @default.
- W2018984101 hasOpenAccess W2018984101 @default.
- W2018984101 hasPrimaryLocation W20189841011 @default.
- W2018984101 hasRelatedWork W1963619153 @default.
- W2018984101 hasRelatedWork W1964730829 @default.
- W2018984101 hasRelatedWork W1971967796 @default.
- W2018984101 hasRelatedWork W1972688401 @default.
- W2018984101 hasRelatedWork W1999003084 @default.
- W2018984101 hasRelatedWork W2004276700 @default.
- W2018984101 hasRelatedWork W2018984101 @default.
- W2018984101 hasRelatedWork W2020251167 @default.
- W2018984101 hasRelatedWork W2030421652 @default.
- W2018984101 hasRelatedWork W2162082827 @default.
- W2018984101 hasVolume "76" @default.
- W2018984101 isParatext "false" @default.
- W2018984101 isRetracted "false" @default.
- W2018984101 magId "2018984101" @default.
- W2018984101 workType "article" @default.