Matches in SemOpenAlex for { <https://semopenalex.org/work/W201900827> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W201900827 endingPage "129" @default.
- W201900827 startingPage "117" @default.
- W201900827 abstract "Density based logistic regression (DLR) is a recently introduced classification technique, that performs a one-to-one non-linear transformation of the original feature space to another feature space based on density estimations. This new feature space is particularly well suited for learning a logistic regression model. Whilst performance gains, good interpretability and time efficiency make DLR attractive, there exist some limitations to its formulation. In this paper, we tackle these limitations and propose several new extensions: 1) A more robust methodology for performing density estimations, 2) A method that can transform two or more features into a single target feature, based on the use of higher order kernel density estimation, 3) Analysis of the utility of DLR for transfer learning scenarios. We evaluate our extensions using several synthetic and publicly available datasets, demonstrating that higher order transformations have the potential to boost prediction performance and that DLR is a promising method for transfer learning." @default.
- W201900827 created "2016-06-24" @default.
- W201900827 creator A5021195478 @default.
- W201900827 creator A5031013029 @default.
- W201900827 date "2014-01-01" @default.
- W201900827 modified "2023-09-24" @default.
- W201900827 title "Improved Feature Transformations for Classification Using Density Estimation" @default.
- W201900827 cites W2014268383 @default.
- W201900827 cites W2015666727 @default.
- W201900827 cites W2021688474 @default.
- W201900827 cites W2045979066 @default.
- W201900827 cites W2101227285 @default.
- W201900827 cites W2135046866 @default.
- W201900827 cites W2145328215 @default.
- W201900827 cites W2165698076 @default.
- W201900827 cites W2503643158 @default.
- W201900827 cites W4238717354 @default.
- W201900827 cites W4294541781 @default.
- W201900827 doi "https://doi.org/10.1007/978-3-319-13560-1_10" @default.
- W201900827 hasPublicationYear "2014" @default.
- W201900827 type Work @default.
- W201900827 sameAs 201900827 @default.
- W201900827 citedByCount "3" @default.
- W201900827 countsByYear W2019008272021 @default.
- W201900827 countsByYear W2019008272022 @default.
- W201900827 countsByYear W2019008272023 @default.
- W201900827 crossrefType "book-chapter" @default.
- W201900827 hasAuthorship W201900827A5021195478 @default.
- W201900827 hasAuthorship W201900827A5031013029 @default.
- W201900827 hasConcept C124101348 @default.
- W201900827 hasConcept C127413603 @default.
- W201900827 hasConcept C138885662 @default.
- W201900827 hasConcept C153180895 @default.
- W201900827 hasConcept C154945302 @default.
- W201900827 hasConcept C201995342 @default.
- W201900827 hasConcept C2776401178 @default.
- W201900827 hasConcept C41008148 @default.
- W201900827 hasConcept C41895202 @default.
- W201900827 hasConcept C96250715 @default.
- W201900827 hasConceptScore W201900827C124101348 @default.
- W201900827 hasConceptScore W201900827C127413603 @default.
- W201900827 hasConceptScore W201900827C138885662 @default.
- W201900827 hasConceptScore W201900827C153180895 @default.
- W201900827 hasConceptScore W201900827C154945302 @default.
- W201900827 hasConceptScore W201900827C201995342 @default.
- W201900827 hasConceptScore W201900827C2776401178 @default.
- W201900827 hasConceptScore W201900827C41008148 @default.
- W201900827 hasConceptScore W201900827C41895202 @default.
- W201900827 hasConceptScore W201900827C96250715 @default.
- W201900827 hasLocation W2019008271 @default.
- W201900827 hasOpenAccess W201900827 @default.
- W201900827 hasPrimaryLocation W2019008271 @default.
- W201900827 hasRelatedWork W2015538044 @default.
- W201900827 hasRelatedWork W2016461833 @default.
- W201900827 hasRelatedWork W2052253960 @default.
- W201900827 hasRelatedWork W2147802381 @default.
- W201900827 hasRelatedWork W2382607599 @default.
- W201900827 hasRelatedWork W2489255581 @default.
- W201900827 hasRelatedWork W2760085659 @default.
- W201900827 hasRelatedWork W2787306535 @default.
- W201900827 hasRelatedWork W3197541072 @default.
- W201900827 hasRelatedWork W2480412556 @default.
- W201900827 isParatext "false" @default.
- W201900827 isRetracted "false" @default.
- W201900827 magId "201900827" @default.
- W201900827 workType "book-chapter" @default.