Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019011366> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2019011366 abstract "In this paper an extension of the Brook's control measure existence theorem for families of vector measures is established. This result is applied to pointwise convergent sequences of finitely additive vector measures to obtain a generalization of the Vitali-Hahn-Saks theorem. Introduction. The results presented in this paper began with an attempt to extend the classical Vitali-Hahn-Saks theorem to sequences of finitely additive vector measures. The work of Bogdanowicz [8], Drewnowski [5], and Labuda [6] indicated that the Baire category argument could be used to establish a vector form of the Vitali-Hahn-Saks theorem for sequences convergent on a delta ring (as opposed to a a-algebra) provided the delta ring was endowed with an appropriate sequentially complete topology. Earlier, Ando [1], using a lemma due to Phillips [9] as a substitute for the Baire category argument, noted the validity of the Vitali-Hahn-Saks theorem for sequences of finitely additive scalar measures on a a-algebra. Later, Brooks and Jewett [4] generalized Phillips' lemma to vector functions and obtained a Vitali-Hahn-Saks theorem for sequences of strongly bounded vector measures convergent pointwise on a a-algebra. Combining the methodology developed by Ando with the Brooks-Jewett formulation of Phillips' lemma yields a formulation of the Vitali-Hahn-Saks theorem which pulls together the ideas developed in the above listed extensions. The results also lead to a more refined knowledge of the control measure existence theorems developed by Bartle, Dunford, and Schwartz [2], Brooks [3], and Drewnowski [5]. Let V denote a ring of subsets of an abstract space X, let N denote the positive integers and let (R +) R denote the (nonnegative) reals. Denote by C(V) the space of all subadditive and increasing functions, from the ring V into R +, which are zero at the empty set. The space C ( V) is called the space of contents on the ring V and elements are referred to as contents. A sequence of sets An E V, n E N, is said to be dominated if there exists a set B E V such that An C B for n = 1, 2, 3, . A contentp E C( V) is said to be Rickart on the ring V if limnp(An) = 0 for each dominated, disjoint sequence An e V, n E N. A set of contents P c C (V) is said to be uniformly Rickart on the ring V if the above limit holds uniformly with Received by the editors August 11, 1976. AMS (MOS) subject classifications (1970). Primary 28A45, 28A10, 28A60. ? American Mathematical Society 1978" @default.
- W2019011366 created "2016-06-24" @default.
- W2019011366 creator A5034363657 @default.
- W2019011366 date "1977-02-01" @default.
- W2019011366 modified "2023-09-27" @default.
- W2019011366 title "Generalizations of the Vitali-Hahn-Saks theorem on vector measures" @default.
- W2019011366 cites W1966340793 @default.
- W2019011366 cites W1971142880 @default.
- W2019011366 cites W1972439526 @default.
- W2019011366 cites W1987990274 @default.
- W2019011366 cites W1996376178 @default.
- W2019011366 cites W2000091293 @default.
- W2019011366 cites W2045689687 @default.
- W2019011366 cites W2046703817 @default.
- W2019011366 cites W2142843283 @default.
- W2019011366 cites W2315666909 @default.
- W2019011366 cites W2324138229 @default.
- W2019011366 cites W659020536 @default.
- W2019011366 doi "https://doi.org/10.1090/s0002-9939-1977-0460585-3" @default.
- W2019011366 hasPublicationYear "1977" @default.
- W2019011366 type Work @default.
- W2019011366 sameAs 2019011366 @default.
- W2019011366 citedByCount "2" @default.
- W2019011366 crossrefType "journal-article" @default.
- W2019011366 hasAuthorship W2019011366A5034363657 @default.
- W2019011366 hasBestOaLocation W20190113661 @default.
- W2019011366 hasConcept C111919701 @default.
- W2019011366 hasConcept C118615104 @default.
- W2019011366 hasConcept C134306372 @default.
- W2019011366 hasConcept C136119220 @default.
- W2019011366 hasConcept C177148314 @default.
- W2019011366 hasConcept C18903297 @default.
- W2019011366 hasConcept C202444582 @default.
- W2019011366 hasConcept C2524010 @default.
- W2019011366 hasConcept C27156116 @default.
- W2019011366 hasConcept C2777759810 @default.
- W2019011366 hasConcept C2777894999 @default.
- W2019011366 hasConcept C2777984123 @default.
- W2019011366 hasConcept C33923547 @default.
- W2019011366 hasConcept C41008148 @default.
- W2019011366 hasConcept C44659138 @default.
- W2019011366 hasConcept C46757340 @default.
- W2019011366 hasConcept C57691317 @default.
- W2019011366 hasConcept C86803240 @default.
- W2019011366 hasConceptScore W2019011366C111919701 @default.
- W2019011366 hasConceptScore W2019011366C118615104 @default.
- W2019011366 hasConceptScore W2019011366C134306372 @default.
- W2019011366 hasConceptScore W2019011366C136119220 @default.
- W2019011366 hasConceptScore W2019011366C177148314 @default.
- W2019011366 hasConceptScore W2019011366C18903297 @default.
- W2019011366 hasConceptScore W2019011366C202444582 @default.
- W2019011366 hasConceptScore W2019011366C2524010 @default.
- W2019011366 hasConceptScore W2019011366C27156116 @default.
- W2019011366 hasConceptScore W2019011366C2777759810 @default.
- W2019011366 hasConceptScore W2019011366C2777894999 @default.
- W2019011366 hasConceptScore W2019011366C2777984123 @default.
- W2019011366 hasConceptScore W2019011366C33923547 @default.
- W2019011366 hasConceptScore W2019011366C41008148 @default.
- W2019011366 hasConceptScore W2019011366C44659138 @default.
- W2019011366 hasConceptScore W2019011366C46757340 @default.
- W2019011366 hasConceptScore W2019011366C57691317 @default.
- W2019011366 hasConceptScore W2019011366C86803240 @default.
- W2019011366 hasLocation W20190113661 @default.
- W2019011366 hasOpenAccess W2019011366 @default.
- W2019011366 hasPrimaryLocation W20190113661 @default.
- W2019011366 hasRelatedWork W1968323061 @default.
- W2019011366 hasRelatedWork W1969773543 @default.
- W2019011366 hasRelatedWork W1996950905 @default.
- W2019011366 hasRelatedWork W2025744079 @default.
- W2019011366 hasRelatedWork W2030185504 @default.
- W2019011366 hasRelatedWork W2077072997 @default.
- W2019011366 hasRelatedWork W2089723054 @default.
- W2019011366 isParatext "false" @default.
- W2019011366 isRetracted "false" @default.
- W2019011366 magId "2019011366" @default.
- W2019011366 workType "article" @default.