Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019011401> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2019011401 endingPage "308" @default.
- W2019011401 startingPage "275" @default.
- W2019011401 abstract "An incremental categorization algorithm is described which, at each step, assigns the next instance to the most probable category. Probabilities are estimated by a Bayesian inference scheme which assumes that instances are partitioned into categories and that within categories features are displayed independently and probabilistically. This algorithm can be shown to be an optimization of an ideal Bayesian algorithm in which predictive accuracy is traded for computational efficiency. The algorithm can deliver predictions about any dimension of a category and does not treat specially the prediction of category labels. The algorithm has successfully modeled much of the empirical literature on human categorization. This paper describes its application to a number of data sets from the machine learning literature. The algorithm performs reasonably well, having its only serious difficulty because the assumption of independent features is not always satisfied. Bayesian extensions to deal with nonindependent features are described and evaluated." @default.
- W2019011401 created "2016-06-24" @default.
- W2019011401 creator A5009474581 @default.
- W2019011401 creator A5052950395 @default.
- W2019011401 date "1992-01-01" @default.
- W2019011401 modified "2023-09-27" @default.
- W2019011401 cites W1500401801 @default.
- W2019011401 cites W1539524531 @default.
- W2019011401 cites W1559570474 @default.
- W2019011401 cites W1570286060 @default.
- W2019011401 cites W1594031697 @default.
- W2019011401 cites W1611032851 @default.
- W2019011401 cites W1988520084 @default.
- W2019011401 cites W1992880122 @default.
- W2019011401 cites W1996686336 @default.
- W2019011401 cites W2000255081 @default.
- W2019011401 cites W2001619934 @default.
- W2019011401 cites W2003175365 @default.
- W2019011401 cites W2006258746 @default.
- W2019011401 cites W2024868117 @default.
- W2019011401 cites W2049633694 @default.
- W2019011401 cites W2059799772 @default.
- W2019011401 cites W2073308541 @default.
- W2019011401 cites W2086618114 @default.
- W2019011401 cites W2092919341 @default.
- W2019011401 cites W2126430683 @default.
- W2019011401 cites W2128420091 @default.
- W2019011401 cites W2134917048 @default.
- W2019011401 cites W2136000097 @default.
- W2019011401 cites W2146257637 @default.
- W2019011401 cites W2147169507 @default.
- W2019011401 cites W2149706766 @default.
- W2019011401 cites W2154164802 @default.
- W2019011401 cites W2156273867 @default.
- W2019011401 cites W2168356776 @default.
- W2019011401 cites W2259839028 @default.
- W2019011401 cites W2797328151 @default.
- W2019011401 cites W3085162807 @default.
- W2019011401 doi "https://doi.org/10.1023/a:1022697317482" @default.
- W2019011401 hasPublicationYear "1992" @default.
- W2019011401 type Work @default.
- W2019011401 sameAs 2019011401 @default.
- W2019011401 citedByCount "31" @default.
- W2019011401 countsByYear W20190114012012 @default.
- W2019011401 countsByYear W20190114012014 @default.
- W2019011401 countsByYear W20190114012015 @default.
- W2019011401 countsByYear W20190114012016 @default.
- W2019011401 countsByYear W20190114012017 @default.
- W2019011401 countsByYear W20190114012018 @default.
- W2019011401 crossrefType "journal-article" @default.
- W2019011401 hasAuthorship W2019011401A5009474581 @default.
- W2019011401 hasAuthorship W2019011401A5052950395 @default.
- W2019011401 hasBestOaLocation W20190114011 @default.
- W2019011401 hasConcept C107673813 @default.
- W2019011401 hasConcept C11413529 @default.
- W2019011401 hasConcept C119857082 @default.
- W2019011401 hasConcept C153180895 @default.
- W2019011401 hasConcept C154945302 @default.
- W2019011401 hasConcept C160234255 @default.
- W2019011401 hasConcept C202444582 @default.
- W2019011401 hasConcept C2776214188 @default.
- W2019011401 hasConcept C33676613 @default.
- W2019011401 hasConcept C33923547 @default.
- W2019011401 hasConcept C41008148 @default.
- W2019011401 hasConcept C94124525 @default.
- W2019011401 hasConceptScore W2019011401C107673813 @default.
- W2019011401 hasConceptScore W2019011401C11413529 @default.
- W2019011401 hasConceptScore W2019011401C119857082 @default.
- W2019011401 hasConceptScore W2019011401C153180895 @default.
- W2019011401 hasConceptScore W2019011401C154945302 @default.
- W2019011401 hasConceptScore W2019011401C160234255 @default.
- W2019011401 hasConceptScore W2019011401C202444582 @default.
- W2019011401 hasConceptScore W2019011401C2776214188 @default.
- W2019011401 hasConceptScore W2019011401C33676613 @default.
- W2019011401 hasConceptScore W2019011401C33923547 @default.
- W2019011401 hasConceptScore W2019011401C41008148 @default.
- W2019011401 hasConceptScore W2019011401C94124525 @default.
- W2019011401 hasIssue "4" @default.
- W2019011401 hasLocation W20190114011 @default.
- W2019011401 hasOpenAccess W2019011401 @default.
- W2019011401 hasPrimaryLocation W20190114011 @default.
- W2019011401 hasRelatedWork W1513235864 @default.
- W2019011401 hasRelatedWork W2753218748 @default.
- W2019011401 hasRelatedWork W2774409638 @default.
- W2019011401 hasRelatedWork W2789413038 @default.
- W2019011401 hasRelatedWork W2889562828 @default.
- W2019011401 hasRelatedWork W2953280030 @default.
- W2019011401 hasRelatedWork W2963058055 @default.
- W2019011401 hasRelatedWork W4225307033 @default.
- W2019011401 hasRelatedWork W4231471330 @default.
- W2019011401 hasRelatedWork W4306990568 @default.
- W2019011401 hasVolume "9" @default.
- W2019011401 isParatext "false" @default.
- W2019011401 isRetracted "false" @default.
- W2019011401 magId "2019011401" @default.
- W2019011401 workType "article" @default.