Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019011643> ?p ?o ?g. }
- W2019011643 endingPage "475" @default.
- W2019011643 startingPage "461" @default.
- W2019011643 abstract "Object based image analysis (OBIA) is an approach increasingly used in classifying high spatial resolution remote sensing images. Object based image classifiersfirst segment an image into objects (or image segments), and then classify these objects based on their attributes and spatial relations. Numerous algorithms exist for the first step of the OBIA process, i.e. image segmentation. However, less research has been conducted on the object classification part of OBIA, in particular the spatial relations between objects that are commonly used to construct rules for classifying image objects and refining classification results. In this paper, we establish a context where objects are areal (not points or lines) and non-overlapping (we call this “single-valued” space), and propose a framework of binary spatial relations between segmented objects to aid in object classification. In this framework, scaledependent “line-like objects” and “point-like objects” are identified from areal objects based on their shapes. Generally, disjoint and meet are the only two possible topological relations between two non-overlapping areal objects. However, a number of quasitopological relations can be defined when the shapes of the objects involved are considered. Some of these relations are fuzzy and thus quantitatively defined. In addition, we define the concepts of line-like objects (e.g. roads) and point-like objects (e.g. wells), and develop the relations between two line-like objects or two point-like objects. For completeness, cardinal direction relations and distance relations are also introduced in the proposed context. Finally, we implement the framework to extract roads and moving vehicles from an aerial photo. The promising results suggest that our methods can be a valuable tool in defining rules for object based image analysis. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)." @default.
- W2019011643 created "2016-06-24" @default.
- W2019011643 creator A5009277467 @default.
- W2019011643 creator A5014968449 @default.
- W2019011643 creator A5076327478 @default.
- W2019011643 date "2008-07-01" @default.
- W2019011643 modified "2023-09-26" @default.
- W2019011643 title "A framework of region-based spatial relations for non-overlapping features and its application in object based image analysis" @default.
- W2019011643 cites W1528103959 @default.
- W2019011643 cites W1844476468 @default.
- W2019011643 cites W1972544340 @default.
- W2019011643 cites W1978757558 @default.
- W2019011643 cites W1998604612 @default.
- W2019011643 cites W2000768282 @default.
- W2019011643 cites W2003129816 @default.
- W2019011643 cites W2003357237 @default.
- W2019011643 cites W2006208634 @default.
- W2019011643 cites W2017834421 @default.
- W2019011643 cites W2018756677 @default.
- W2019011643 cites W2026531504 @default.
- W2019011643 cites W2042139292 @default.
- W2019011643 cites W2051870742 @default.
- W2019011643 cites W2061240006 @default.
- W2019011643 cites W2061823525 @default.
- W2019011643 cites W2065548619 @default.
- W2019011643 cites W2066762016 @default.
- W2019011643 cites W2072938876 @default.
- W2019011643 cites W2086141297 @default.
- W2019011643 cites W2089868779 @default.
- W2019011643 cites W2133039566 @default.
- W2019011643 cites W2136704614 @default.
- W2019011643 cites W2148878936 @default.
- W2019011643 cites W2152640741 @default.
- W2019011643 cites W2330267259 @default.
- W2019011643 cites W5053679 @default.
- W2019011643 doi "https://doi.org/10.1016/j.isprsjprs.2008.01.007" @default.
- W2019011643 hasPublicationYear "2008" @default.
- W2019011643 type Work @default.
- W2019011643 sameAs 2019011643 @default.
- W2019011643 citedByCount "56" @default.
- W2019011643 countsByYear W20190116432012 @default.
- W2019011643 countsByYear W20190116432013 @default.
- W2019011643 countsByYear W20190116432014 @default.
- W2019011643 countsByYear W20190116432015 @default.
- W2019011643 countsByYear W20190116432016 @default.
- W2019011643 countsByYear W20190116432017 @default.
- W2019011643 countsByYear W20190116432018 @default.
- W2019011643 countsByYear W20190116432019 @default.
- W2019011643 countsByYear W20190116432020 @default.
- W2019011643 countsByYear W20190116432021 @default.
- W2019011643 crossrefType "journal-article" @default.
- W2019011643 hasAuthorship W2019011643A5009277467 @default.
- W2019011643 hasAuthorship W2019011643A5014968449 @default.
- W2019011643 hasAuthorship W2019011643A5076327478 @default.
- W2019011643 hasConcept C105795698 @default.
- W2019011643 hasConcept C114614502 @default.
- W2019011643 hasConcept C124101348 @default.
- W2019011643 hasConcept C153180895 @default.
- W2019011643 hasConcept C153938966 @default.
- W2019011643 hasConcept C154945302 @default.
- W2019011643 hasConcept C159620131 @default.
- W2019011643 hasConcept C166957645 @default.
- W2019011643 hasConcept C182124507 @default.
- W2019011643 hasConcept C203689450 @default.
- W2019011643 hasConcept C205649164 @default.
- W2019011643 hasConcept C2524010 @default.
- W2019011643 hasConcept C25343380 @default.
- W2019011643 hasConcept C27511587 @default.
- W2019011643 hasConcept C2779343474 @default.
- W2019011643 hasConcept C2781238097 @default.
- W2019011643 hasConcept C28719098 @default.
- W2019011643 hasConcept C33923547 @default.
- W2019011643 hasConcept C41008148 @default.
- W2019011643 hasConcept C45340560 @default.
- W2019011643 hasConcept C64754055 @default.
- W2019011643 hasConcept C89600930 @default.
- W2019011643 hasConceptScore W2019011643C105795698 @default.
- W2019011643 hasConceptScore W2019011643C114614502 @default.
- W2019011643 hasConceptScore W2019011643C124101348 @default.
- W2019011643 hasConceptScore W2019011643C153180895 @default.
- W2019011643 hasConceptScore W2019011643C153938966 @default.
- W2019011643 hasConceptScore W2019011643C154945302 @default.
- W2019011643 hasConceptScore W2019011643C159620131 @default.
- W2019011643 hasConceptScore W2019011643C166957645 @default.
- W2019011643 hasConceptScore W2019011643C182124507 @default.
- W2019011643 hasConceptScore W2019011643C203689450 @default.
- W2019011643 hasConceptScore W2019011643C205649164 @default.
- W2019011643 hasConceptScore W2019011643C2524010 @default.
- W2019011643 hasConceptScore W2019011643C25343380 @default.
- W2019011643 hasConceptScore W2019011643C27511587 @default.
- W2019011643 hasConceptScore W2019011643C2779343474 @default.
- W2019011643 hasConceptScore W2019011643C2781238097 @default.
- W2019011643 hasConceptScore W2019011643C28719098 @default.
- W2019011643 hasConceptScore W2019011643C33923547 @default.
- W2019011643 hasConceptScore W2019011643C41008148 @default.
- W2019011643 hasConceptScore W2019011643C45340560 @default.
- W2019011643 hasConceptScore W2019011643C64754055 @default.
- W2019011643 hasConceptScore W2019011643C89600930 @default.