Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019012731> ?p ?o ?g. }
- W2019012731 endingPage "5422" @default.
- W2019012731 startingPage "5409" @default.
- W2019012731 abstract "Excess energy dissipation pathways (heat and fluorescence) were monitored, at leaf level as indicators of plant physiological status, with field spectroscopy techniques on poplar clones subjected to ozone fumigation. Measurements of spectral radiance emerging from a leaf provide a fast, non‐destructive method for the assessment of excess energy dissipation: xanthophyll‐related heat dissipation was estimated with the photochemical reflectance index (PRI) calculated from a traditional field spectrometer, and steady‐state fluorescence (Fs) under natural illumination conditions was estimated by exploiting a variation of the Fraunhofer line‐depth principle, where the radiance collected with very high resolution spectrometers (FWHM = 0.13 nm) was spectrally modelled. Both remotely‐sensed dissipation pathways responded to fumigation. During a 26‐day fumigation experiment, four diurnal cycles of spectral measurements were collected in parallel to meteorological and key physiological variables (active fluorescence, net photosynthesis) and leaf sample collection for pigment extraction. We outline evidence of a link between the remotely‐sensed Fs and PRI and leaf physiological status. These results open up new possibilities for assessment of plant stress by means of hyperspectral remote sensing." @default.
- W2019012731 created "2016-06-24" @default.
- W2019012731 creator A5004542037 @default.
- W2019012731 creator A5013466419 @default.
- W2019012731 creator A5019301974 @default.
- W2019012731 creator A5020570515 @default.
- W2019012731 creator A5027845420 @default.
- W2019012731 creator A5044753262 @default.
- W2019012731 creator A5056029481 @default.
- W2019012731 creator A5077283969 @default.
- W2019012731 date "2008-09-01" @default.
- W2019012731 modified "2023-10-16" @default.
- W2019012731 title "Leaf level early assessment of ozone injuries by passive fluorescence and photochemical reflectance index" @default.
- W2019012731 cites W100118852 @default.
- W2019012731 cites W1515598415 @default.
- W2019012731 cites W187446391 @default.
- W2019012731 cites W1974772335 @default.
- W2019012731 cites W1975892234 @default.
- W2019012731 cites W1977089387 @default.
- W2019012731 cites W1979964312 @default.
- W2019012731 cites W1980223099 @default.
- W2019012731 cites W1980298608 @default.
- W2019012731 cites W1984928800 @default.
- W2019012731 cites W1985555755 @default.
- W2019012731 cites W1987490310 @default.
- W2019012731 cites W1990760445 @default.
- W2019012731 cites W1991773162 @default.
- W2019012731 cites W1992979930 @default.
- W2019012731 cites W1994539463 @default.
- W2019012731 cites W1999900134 @default.
- W2019012731 cites W2002190523 @default.
- W2019012731 cites W2011320090 @default.
- W2019012731 cites W2025444714 @default.
- W2019012731 cites W2030106896 @default.
- W2019012731 cites W2030233869 @default.
- W2019012731 cites W2030274299 @default.
- W2019012731 cites W2036003376 @default.
- W2019012731 cites W2042606221 @default.
- W2019012731 cites W2047328174 @default.
- W2019012731 cites W2048752259 @default.
- W2019012731 cites W2048773317 @default.
- W2019012731 cites W2073555669 @default.
- W2019012731 cites W2080333585 @default.
- W2019012731 cites W2096996101 @default.
- W2019012731 cites W2098145939 @default.
- W2019012731 cites W2106367330 @default.
- W2019012731 cites W2121181770 @default.
- W2019012731 cites W2129483042 @default.
- W2019012731 cites W2129804846 @default.
- W2019012731 cites W2144594120 @default.
- W2019012731 cites W2155271226 @default.
- W2019012731 cites W2157905269 @default.
- W2019012731 cites W2164995320 @default.
- W2019012731 cites W2165897784 @default.
- W2019012731 cites W2248139498 @default.
- W2019012731 cites W67190743 @default.
- W2019012731 doi "https://doi.org/10.1080/01431160802036292" @default.
- W2019012731 hasPublicationYear "2008" @default.
- W2019012731 type Work @default.
- W2019012731 sameAs 2019012731 @default.
- W2019012731 citedByCount "107" @default.
- W2019012731 countsByYear W20190127312012 @default.
- W2019012731 countsByYear W20190127312013 @default.
- W2019012731 countsByYear W20190127312014 @default.
- W2019012731 countsByYear W20190127312015 @default.
- W2019012731 countsByYear W20190127312016 @default.
- W2019012731 countsByYear W20190127312017 @default.
- W2019012731 countsByYear W20190127312018 @default.
- W2019012731 countsByYear W20190127312019 @default.
- W2019012731 countsByYear W20190127312020 @default.
- W2019012731 countsByYear W20190127312021 @default.
- W2019012731 countsByYear W20190127312022 @default.
- W2019012731 countsByYear W20190127312023 @default.
- W2019012731 crossrefType "journal-article" @default.
- W2019012731 hasAuthorship W2019012731A5004542037 @default.
- W2019012731 hasAuthorship W2019012731A5013466419 @default.
- W2019012731 hasAuthorship W2019012731A5019301974 @default.
- W2019012731 hasAuthorship W2019012731A5020570515 @default.
- W2019012731 hasAuthorship W2019012731A5027845420 @default.
- W2019012731 hasAuthorship W2019012731A5044753262 @default.
- W2019012731 hasAuthorship W2019012731A5056029481 @default.
- W2019012731 hasAuthorship W2019012731A5077283969 @default.
- W2019012731 hasConcept C120665830 @default.
- W2019012731 hasConcept C121332964 @default.
- W2019012731 hasConcept C124967146 @default.
- W2019012731 hasConcept C127313418 @default.
- W2019012731 hasConcept C1276947 @default.
- W2019012731 hasConcept C144027150 @default.
- W2019012731 hasConcept C153294291 @default.
- W2019012731 hasConcept C159078339 @default.
- W2019012731 hasConcept C192562407 @default.
- W2019012731 hasConcept C23690007 @default.
- W2019012731 hasConcept C24630173 @default.
- W2019012731 hasConcept C2777476368 @default.
- W2019012731 hasConcept C2780897802 @default.
- W2019012731 hasConcept C33390570 @default.
- W2019012731 hasConcept C39432304 @default.
- W2019012731 hasConcept C4839761 @default.