Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019013946> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2019013946 endingPage "1119" @default.
- W2019013946 startingPage "1113" @default.
- W2019013946 abstract "Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) studies were preformed on a class of Ikb Kinase-2 (IKK-2) inhibitors, which contained thiophene-carboxamide series and their analogs. Before 3D-QSAR, a pharmacophore-based molecular alignment model was built by using Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Datasets (GALAHAD). At the same time, we constructed another molecular model by application of classical common structure alignment method as a comparative study. The results of the Comparative Molecule Field Analysis (CoMFA), the main 3D-QSAR method applied in this paper, suggested that GALAHAD was a better tool for molecular alignment in this study. Based on the GALAHAD molecular alignment model, 3D-QSAR analysis, including CoMFA and Comparative Molecule Similarity Indices Analysis (CoMSIA), was carried out. The leave-one-out cross-validation correlation coefficient (q=0.642; q=0.675) and the good correlation between the predicted and experimental activities of excluded test compounds revealed that CoMFA and CoMSIA models were robust. These models are useful tools for predicting the inhibitory activities of the new compounds against IKK-2. Suggestions of structural modification were then derived from the analysis of the 3D-QSAR, and these will probably lead to the more active IKK-2 inhibitors." @default.
- W2019013946 created "2016-06-24" @default.
- W2019013946 creator A5014490044 @default.
- W2019013946 creator A5023116661 @default.
- W2019013946 creator A5059104237 @default.
- W2019013946 creator A5066229903 @default.
- W2019013946 creator A5066306211 @default.
- W2019013946 date "2008-09-01" @default.
- W2019013946 modified "2023-10-15" @default.
- W2019013946 title "3D-QSAR Studies on a Class of IKK-2 Inhibitors with GALAHAD Used to Develop Molecular Alignment Models" @default.
- W2019013946 cites W1963601733 @default.
- W2019013946 cites W1992056375 @default.
- W2019013946 cites W2012943500 @default.
- W2019013946 cites W2017281018 @default.
- W2019013946 cites W2026610312 @default.
- W2019013946 cites W2042922850 @default.
- W2019013946 cites W2045886429 @default.
- W2019013946 cites W2059958588 @default.
- W2019013946 cites W2063060349 @default.
- W2019013946 cites W2071947717 @default.
- W2019013946 cites W2090971258 @default.
- W2019013946 cites W2112785503 @default.
- W2019013946 cites W2127682057 @default.
- W2019013946 cites W2155933617 @default.
- W2019013946 cites W2161239029 @default.
- W2019013946 cites W2179997230 @default.
- W2019013946 cites W2215268165 @default.
- W2019013946 cites W2335925695 @default.
- W2019013946 doi "https://doi.org/10.1002/qsar.200730163" @default.
- W2019013946 hasPublicationYear "2008" @default.
- W2019013946 type Work @default.
- W2019013946 sameAs 2019013946 @default.
- W2019013946 citedByCount "15" @default.
- W2019013946 countsByYear W20190139462012 @default.
- W2019013946 countsByYear W20190139462013 @default.
- W2019013946 countsByYear W20190139462016 @default.
- W2019013946 countsByYear W20190139462017 @default.
- W2019013946 countsByYear W20190139462018 @default.
- W2019013946 countsByYear W20190139462021 @default.
- W2019013946 countsByYear W20190139462022 @default.
- W2019013946 crossrefType "journal-article" @default.
- W2019013946 hasAuthorship W2019013946A5014490044 @default.
- W2019013946 hasAuthorship W2019013946A5023116661 @default.
- W2019013946 hasAuthorship W2019013946A5059104237 @default.
- W2019013946 hasAuthorship W2019013946A5066229903 @default.
- W2019013946 hasAuthorship W2019013946A5066306211 @default.
- W2019013946 hasConcept C147597530 @default.
- W2019013946 hasConcept C164126121 @default.
- W2019013946 hasConcept C185592680 @default.
- W2019013946 hasConcept C56173144 @default.
- W2019013946 hasConcept C70721500 @default.
- W2019013946 hasConcept C71240020 @default.
- W2019013946 hasConcept C86803240 @default.
- W2019013946 hasConceptScore W2019013946C147597530 @default.
- W2019013946 hasConceptScore W2019013946C164126121 @default.
- W2019013946 hasConceptScore W2019013946C185592680 @default.
- W2019013946 hasConceptScore W2019013946C56173144 @default.
- W2019013946 hasConceptScore W2019013946C70721500 @default.
- W2019013946 hasConceptScore W2019013946C71240020 @default.
- W2019013946 hasConceptScore W2019013946C86803240 @default.
- W2019013946 hasIssue "9" @default.
- W2019013946 hasLocation W20190139461 @default.
- W2019013946 hasOpenAccess W2019013946 @default.
- W2019013946 hasPrimaryLocation W20190139461 @default.
- W2019013946 hasRelatedWork W2001552790 @default.
- W2019013946 hasRelatedWork W2002578321 @default.
- W2019013946 hasRelatedWork W2021051369 @default.
- W2019013946 hasRelatedWork W2059558045 @default.
- W2019013946 hasRelatedWork W2068182031 @default.
- W2019013946 hasRelatedWork W2225633491 @default.
- W2019013946 hasRelatedWork W2314430254 @default.
- W2019013946 hasRelatedWork W2333220762 @default.
- W2019013946 hasRelatedWork W2770470780 @default.
- W2019013946 hasRelatedWork W4293451067 @default.
- W2019013946 hasVolume "27" @default.
- W2019013946 isParatext "false" @default.
- W2019013946 isRetracted "false" @default.
- W2019013946 magId "2019013946" @default.
- W2019013946 workType "article" @default.