Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019014105> ?p ?o ?g. }
- W2019014105 endingPage "753" @default.
- W2019014105 startingPage "743" @default.
- W2019014105 abstract "Vitamins B6 (VB6) and B12 (VB12) were simultaneously determined in pharmaceutical preparations by using square wave voltametry (SWV) together with artificial neural networks (ANNs). Supporting electrolyte solution, pH and voltametric technique were optimised. The calibration set was built with several artificial samples containing both active ingredients and excipients. Deviations from linearity were observed for both analytes. It is probably due to interactions among the electro active components and competition by the electrode surface, fact that supports the use of ANNs. Recoveries when analysing a nine sample validation set, of 100.2 and 96.4 were calculated for VB6 and VB12, respectively. Commercial samples were analysed with reasonably good results considering the complexity of the mixture studied." @default.
- W2019014105 created "2016-06-24" @default.
- W2019014105 creator A5076970331 @default.
- W2019014105 date "2003-12-01" @default.
- W2019014105 modified "2023-10-18" @default.
- W2019014105 title "Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B6 and B12 vitamins in pharmaceutical preparations" @default.
- W2019014105 cites W1579198272 @default.
- W2019014105 cites W1966101578 @default.
- W2019014105 cites W1966393153 @default.
- W2019014105 cites W1972190036 @default.
- W2019014105 cites W1976428510 @default.
- W2019014105 cites W1978501410 @default.
- W2019014105 cites W1980429098 @default.
- W2019014105 cites W1987232742 @default.
- W2019014105 cites W1999058781 @default.
- W2019014105 cites W2002815116 @default.
- W2019014105 cites W2004911157 @default.
- W2019014105 cites W2006080212 @default.
- W2019014105 cites W2016891755 @default.
- W2019014105 cites W2017073387 @default.
- W2019014105 cites W2020558224 @default.
- W2019014105 cites W2021873216 @default.
- W2019014105 cites W2023292755 @default.
- W2019014105 cites W2025099430 @default.
- W2019014105 cites W2031007865 @default.
- W2019014105 cites W2039660610 @default.
- W2019014105 cites W2060257247 @default.
- W2019014105 cites W2060888232 @default.
- W2019014105 cites W2067018447 @default.
- W2019014105 cites W2069710930 @default.
- W2019014105 cites W2071365690 @default.
- W2019014105 cites W2076777870 @default.
- W2019014105 cites W2077525115 @default.
- W2019014105 cites W2079874704 @default.
- W2019014105 cites W2089253421 @default.
- W2019014105 cites W2092263115 @default.
- W2019014105 cites W2093272787 @default.
- W2019014105 cites W2093590509 @default.
- W2019014105 cites W2095565710 @default.
- W2019014105 cites W2136552966 @default.
- W2019014105 cites W2142829539 @default.
- W2019014105 cites W3126835529 @default.
- W2019014105 cites W2518817883 @default.
- W2019014105 doi "https://doi.org/10.1016/s0039-9140(03)00335-7" @default.
- W2019014105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18969239" @default.
- W2019014105 hasPublicationYear "2003" @default.
- W2019014105 type Work @default.
- W2019014105 sameAs 2019014105 @default.
- W2019014105 citedByCount "72" @default.
- W2019014105 countsByYear W20190141052012 @default.
- W2019014105 countsByYear W20190141052013 @default.
- W2019014105 countsByYear W20190141052014 @default.
- W2019014105 countsByYear W20190141052015 @default.
- W2019014105 countsByYear W20190141052016 @default.
- W2019014105 countsByYear W20190141052017 @default.
- W2019014105 countsByYear W20190141052018 @default.
- W2019014105 countsByYear W20190141052019 @default.
- W2019014105 countsByYear W20190141052020 @default.
- W2019014105 countsByYear W20190141052021 @default.
- W2019014105 countsByYear W20190141052022 @default.
- W2019014105 countsByYear W20190141052023 @default.
- W2019014105 crossrefType "journal-article" @default.
- W2019014105 hasAuthorship W2019014105A5076970331 @default.
- W2019014105 hasBestOaLocation W20190141052 @default.
- W2019014105 hasConcept C10390740 @default.
- W2019014105 hasConcept C105795698 @default.
- W2019014105 hasConcept C113196181 @default.
- W2019014105 hasConcept C119128265 @default.
- W2019014105 hasConcept C121332964 @default.
- W2019014105 hasConcept C147789679 @default.
- W2019014105 hasConcept C151304367 @default.
- W2019014105 hasConcept C165801399 @default.
- W2019014105 hasConcept C165838908 @default.
- W2019014105 hasConcept C17525397 @default.
- W2019014105 hasConcept C185592680 @default.
- W2019014105 hasConcept C186060115 @default.
- W2019014105 hasConcept C23531484 @default.
- W2019014105 hasConcept C2776422427 @default.
- W2019014105 hasConcept C2777869211 @default.
- W2019014105 hasConcept C2779603750 @default.
- W2019014105 hasConcept C33923547 @default.
- W2019014105 hasConcept C43617362 @default.
- W2019014105 hasConcept C52859227 @default.
- W2019014105 hasConcept C62520636 @default.
- W2019014105 hasConcept C68801617 @default.
- W2019014105 hasConcept C77170095 @default.
- W2019014105 hasConcept C86803240 @default.
- W2019014105 hasConcept C96352100 @default.
- W2019014105 hasConceptScore W2019014105C10390740 @default.
- W2019014105 hasConceptScore W2019014105C105795698 @default.
- W2019014105 hasConceptScore W2019014105C113196181 @default.
- W2019014105 hasConceptScore W2019014105C119128265 @default.
- W2019014105 hasConceptScore W2019014105C121332964 @default.
- W2019014105 hasConceptScore W2019014105C147789679 @default.
- W2019014105 hasConceptScore W2019014105C151304367 @default.
- W2019014105 hasConceptScore W2019014105C165801399 @default.
- W2019014105 hasConceptScore W2019014105C165838908 @default.
- W2019014105 hasConceptScore W2019014105C17525397 @default.