Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019016535> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2019016535 endingPage "215" @default.
- W2019016535 startingPage "207" @default.
- W2019016535 abstract "Three hypotheses are tested for the pre-conditioning of airborne gamma-ray spectra to improve the accuracy of principal component-type (PC) spectral noise-reduction methods. First, I show that the distribution of the input variables (channel count rates) has little effect on the accuracy of the noise-reduction methods. Second, if there are insufficient spectra of a particular shape to form a statistically significant sample, then this shape will not be resolved by the noise-reduction methods, and will be removed as noise. However, by padding the data space with spectra exhibiting the full range of possible spectral shapes, an improvement in accuracy can be achieved. Third, the low signal- to-noise ratio in raw gamma-ray spectra limits the effectiveness of PC methods for removing the noise. If the signal-to-noise ratio in the input spectra is improved, the PC methods better remove the noise. Along-line summing of spectra improves the signal-to- noise ratio by exploiting the high correlation in signal between successive airborne gamma-ray spectra along each flight line. Summing spectra to optimum channels also improves the signal- to-noise ratio, but at the expense of spectral resolution. In both cases, spectral summing prior to the application of PC-type noise reduction results in a significant improvement in the accuracy of the noise-reduced spectra." @default.
- W2019016535 created "2016-06-24" @default.
- W2019016535 creator A5075358742 @default.
- W2019016535 date "2003-06-01" @default.
- W2019016535 modified "2023-09-26" @default.
- W2019016535 title "Accurate noise reduction for airborne gamma-ray spectrometry" @default.
- W2019016535 cites W2154364421 @default.
- W2019016535 cites W2503993098 @default.
- W2019016535 cites W4300515658 @default.
- W2019016535 doi "https://doi.org/10.1071/eg03207" @default.
- W2019016535 hasPublicationYear "2003" @default.
- W2019016535 type Work @default.
- W2019016535 sameAs 2019016535 @default.
- W2019016535 citedByCount "7" @default.
- W2019016535 countsByYear W20190165352015 @default.
- W2019016535 countsByYear W20190165352016 @default.
- W2019016535 countsByYear W20190165352018 @default.
- W2019016535 countsByYear W20190165352019 @default.
- W2019016535 countsByYear W20190165352020 @default.
- W2019016535 crossrefType "journal-article" @default.
- W2019016535 hasAuthorship W2019016535A5075358742 @default.
- W2019016535 hasConcept C115961682 @default.
- W2019016535 hasConcept C120665830 @default.
- W2019016535 hasConcept C121332964 @default.
- W2019016535 hasConcept C1276947 @default.
- W2019016535 hasConcept C13944312 @default.
- W2019016535 hasConcept C154945302 @default.
- W2019016535 hasConcept C163294075 @default.
- W2019016535 hasConcept C199360897 @default.
- W2019016535 hasConcept C24890656 @default.
- W2019016535 hasConcept C2779843651 @default.
- W2019016535 hasConcept C41008148 @default.
- W2019016535 hasConcept C4839761 @default.
- W2019016535 hasConcept C99498987 @default.
- W2019016535 hasConceptScore W2019016535C115961682 @default.
- W2019016535 hasConceptScore W2019016535C120665830 @default.
- W2019016535 hasConceptScore W2019016535C121332964 @default.
- W2019016535 hasConceptScore W2019016535C1276947 @default.
- W2019016535 hasConceptScore W2019016535C13944312 @default.
- W2019016535 hasConceptScore W2019016535C154945302 @default.
- W2019016535 hasConceptScore W2019016535C163294075 @default.
- W2019016535 hasConceptScore W2019016535C199360897 @default.
- W2019016535 hasConceptScore W2019016535C24890656 @default.
- W2019016535 hasConceptScore W2019016535C2779843651 @default.
- W2019016535 hasConceptScore W2019016535C41008148 @default.
- W2019016535 hasConceptScore W2019016535C4839761 @default.
- W2019016535 hasConceptScore W2019016535C99498987 @default.
- W2019016535 hasIssue "3" @default.
- W2019016535 hasLocation W20190165351 @default.
- W2019016535 hasOpenAccess W2019016535 @default.
- W2019016535 hasPrimaryLocation W20190165351 @default.
- W2019016535 hasRelatedWork W1988647737 @default.
- W2019016535 hasRelatedWork W2008332316 @default.
- W2019016535 hasRelatedWork W2099367845 @default.
- W2019016535 hasRelatedWork W2107700525 @default.
- W2019016535 hasRelatedWork W2132162100 @default.
- W2019016535 hasRelatedWork W2147221670 @default.
- W2019016535 hasRelatedWork W2335515558 @default.
- W2019016535 hasRelatedWork W2348417436 @default.
- W2019016535 hasRelatedWork W2638207167 @default.
- W2019016535 hasRelatedWork W3004874331 @default.
- W2019016535 hasVolume "34" @default.
- W2019016535 isParatext "false" @default.
- W2019016535 isRetracted "false" @default.
- W2019016535 magId "2019016535" @default.
- W2019016535 workType "article" @default.