Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019017053> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2019017053 endingPage "95" @default.
- W2019017053 startingPage "95" @default.
- W2019017053 abstract "It is shown that a finite dimensional, flexible, powerassociative, Lie-admissible algebra W over a field of characteristic 0 is a nilalgebra and there exists a Cartan subalgebra of %which is nil in W. Let W be a flexible algebra, that is, a nonassociative algebra satisfying the flexible law (xy)x = x(yx). The algebra 9is defined as the same vector space as 9t but with a multiplication given by [x, y] = xy yx. Then 9 is said to be Lie-admissible 9is a Lie algebra. If W is finite dimensional, we consider a Cartan subalgebra $ of 9-. Since Dh Rh L7, is a derivation of 9t for every h in $ and $ is the Fitting null component of 9for D($5), it follows that $ is a subalgebra of 9. If 9is a simple Lie algebra, it is shown that 91 is a nilalgebra ([3] and [4]). In case Wis simple, the structure of 91 has been studied in [2] by using a Cartan subalgebra of 9which is nil in 9t. In this note we give a condition that 9 be a nilalgebra in terms of a Cartan subalgebra of 9-. THEOREM. Suppose that 91 is a finite dimensional, flexible, powerassociative, Lie-admissible algebra over a field of characteristic 0. Then 9 is a nilalgebra and there exists a Cartan subalgebra of 9which is nil in W. PROOF. The only if part is obvious. Let $ be a Cartan subalgebra of 9which is nil in 9. Let $1 be the nil radical of W (the maximal nil ideal of 9). Suppose that 9 is not a nilalgebra. Then the quotient algebra W = W/91 satisfies the assumptions in the theorem and is semisimple. Since any flexible power-associative algebra of characteristic 0 is strictly power-associative, it follows from [4] that 9 has an identity T. Since the characteristic is 0, it also follows from [1, p. 379] that the homomorphic image 5 of $ is a Cartan subalgebra of the Lie algebra W-. But then 1 is in 5, and since t is nil in 9, this is a contradiction. Therefore 9 is a nilalgebra. Received by the editors February 24, 1971. AMS 1970 subject classifications. Primary 17A20, 17B05." @default.
- W2019017053 created "2016-06-24" @default.
- W2019017053 creator A5079310901 @default.
- W2019017053 date "1972-01-01" @default.
- W2019017053 modified "2023-09-25" @default.
- W2019017053 title "A note on Lie-admissible nilalgebras" @default.
- W2019017053 cites W2312417168 @default.
- W2019017053 cites W2322840450 @default.
- W2019017053 cites W2328389143 @default.
- W2019017053 doi "https://doi.org/10.1090/s0002-9939-1972-0291230-3" @default.
- W2019017053 hasPublicationYear "1972" @default.
- W2019017053 type Work @default.
- W2019017053 sameAs 2019017053 @default.
- W2019017053 citedByCount "1" @default.
- W2019017053 crossrefType "journal-article" @default.
- W2019017053 hasAuthorship W2019017053A5079310901 @default.
- W2019017053 hasBestOaLocation W20190170531 @default.
- W2019017053 hasConcept C111472728 @default.
- W2019017053 hasConcept C118615104 @default.
- W2019017053 hasConcept C136119220 @default.
- W2019017053 hasConcept C138885662 @default.
- W2019017053 hasConcept C145807718 @default.
- W2019017053 hasConcept C174696410 @default.
- W2019017053 hasConcept C202444582 @default.
- W2019017053 hasConcept C203946495 @default.
- W2019017053 hasConcept C2780586882 @default.
- W2019017053 hasConcept C33923547 @default.
- W2019017053 hasConcept C51568863 @default.
- W2019017053 hasConcept C5475112 @default.
- W2019017053 hasConcept C65096084 @default.
- W2019017053 hasConcept C6628132 @default.
- W2019017053 hasConcept C67996461 @default.
- W2019017053 hasConcept C73648015 @default.
- W2019017053 hasConcept C81999800 @default.
- W2019017053 hasConcept C9652623 @default.
- W2019017053 hasConceptScore W2019017053C111472728 @default.
- W2019017053 hasConceptScore W2019017053C118615104 @default.
- W2019017053 hasConceptScore W2019017053C136119220 @default.
- W2019017053 hasConceptScore W2019017053C138885662 @default.
- W2019017053 hasConceptScore W2019017053C145807718 @default.
- W2019017053 hasConceptScore W2019017053C174696410 @default.
- W2019017053 hasConceptScore W2019017053C202444582 @default.
- W2019017053 hasConceptScore W2019017053C203946495 @default.
- W2019017053 hasConceptScore W2019017053C2780586882 @default.
- W2019017053 hasConceptScore W2019017053C33923547 @default.
- W2019017053 hasConceptScore W2019017053C51568863 @default.
- W2019017053 hasConceptScore W2019017053C5475112 @default.
- W2019017053 hasConceptScore W2019017053C65096084 @default.
- W2019017053 hasConceptScore W2019017053C6628132 @default.
- W2019017053 hasConceptScore W2019017053C67996461 @default.
- W2019017053 hasConceptScore W2019017053C73648015 @default.
- W2019017053 hasConceptScore W2019017053C81999800 @default.
- W2019017053 hasConceptScore W2019017053C9652623 @default.
- W2019017053 hasIssue "1" @default.
- W2019017053 hasLocation W20190170531 @default.
- W2019017053 hasOpenAccess W2019017053 @default.
- W2019017053 hasPrimaryLocation W20190170531 @default.
- W2019017053 hasRelatedWork W1703320670 @default.
- W2019017053 hasRelatedWork W1964556173 @default.
- W2019017053 hasRelatedWork W1968896251 @default.
- W2019017053 hasRelatedWork W1971173494 @default.
- W2019017053 hasRelatedWork W1976910075 @default.
- W2019017053 hasRelatedWork W2007932410 @default.
- W2019017053 hasRelatedWork W2013326621 @default.
- W2019017053 hasRelatedWork W2016764750 @default.
- W2019017053 hasRelatedWork W2035190706 @default.
- W2019017053 hasRelatedWork W2035215149 @default.
- W2019017053 hasRelatedWork W2037554943 @default.
- W2019017053 hasRelatedWork W2058280982 @default.
- W2019017053 hasRelatedWork W2079772506 @default.
- W2019017053 hasRelatedWork W2086078357 @default.
- W2019017053 hasRelatedWork W2158679089 @default.
- W2019017053 hasRelatedWork W2362050236 @default.
- W2019017053 hasRelatedWork W2387540135 @default.
- W2019017053 hasRelatedWork W2950355091 @default.
- W2019017053 hasRelatedWork W2964299347 @default.
- W2019017053 hasRelatedWork W3197164248 @default.
- W2019017053 hasVolume "31" @default.
- W2019017053 isParatext "false" @default.
- W2019017053 isRetracted "false" @default.
- W2019017053 magId "2019017053" @default.
- W2019017053 workType "article" @default.