Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019051621> ?p ?o ?g. }
- W2019051621 endingPage "3043" @default.
- W2019051621 startingPage "3028" @default.
- W2019051621 abstract "Abstract Model‐based analyses are common in phylogeographic inference because they parameterize processes such as population division, gene flow and expansion that are of interest to biologists. Approximate Bayesian computation is a model‐based approach that can be customized to any empirical system and used to calculate the relative posterior probability of several models, provided that suitable models can be identified for comparison. The question of how to identify suitable models is explored using data from Plethodon idahoensis , a salamander that inhabits the North American inland northwest temperate rainforest. First, we conduct an ABC analysis using five models suggested by previous research, calculate the relative posterior probabilities and find that a simple model of population isolation has the best fit to the data ( PP = 0.70). In contrast to this subjective choice of models to include in the analysis, we also specify models in a more objective manner by simulating prior distributions for 143 models that included panmixia, population isolation, change in effective population size, migration and range expansion. We then identify a smaller subset of models for comparison by generating an expectation of the highest posterior probability that a false model is likely to achieve due to chance and calculate the relative posterior probabilities of only those models that exceed this expected level. A model that parameterized divergence with population expansion and gene flow in one direction offered the best fit to the P. idahoensis data (in contrast to an isolation‐only model from the first analysis). Our investigation demonstrates that the determination of which models to include in ABC model choice experiments is a vital component of model‐based phylogeographic analysis." @default.
- W2019051621 created "2016-06-24" @default.
- W2019051621 creator A5027836945 @default.
- W2019051621 creator A5080002402 @default.
- W2019051621 date "2014-04-25" @default.
- W2019051621 modified "2023-10-04" @default.
- W2019051621 title "Model choice for phylogeographic inference using a large set of models" @default.
- W2019051621 cites W1965175390 @default.
- W2019051621 cites W1980041208 @default.
- W2019051621 cites W1999988283 @default.
- W2019051621 cites W2024294228 @default.
- W2019051621 cites W2026819812 @default.
- W2019051621 cites W2034795216 @default.
- W2019051621 cites W2037062580 @default.
- W2019051621 cites W2043257260 @default.
- W2019051621 cites W2049886497 @default.
- W2019051621 cites W2052195764 @default.
- W2019051621 cites W2052931301 @default.
- W2019051621 cites W2058532318 @default.
- W2019051621 cites W2066209107 @default.
- W2019051621 cites W2077386988 @default.
- W2019051621 cites W2100172795 @default.
- W2019051621 cites W2101091363 @default.
- W2019051621 cites W2102234847 @default.
- W2019051621 cites W2107963140 @default.
- W2019051621 cites W2110910793 @default.
- W2019051621 cites W2112011866 @default.
- W2019051621 cites W2117238111 @default.
- W2019051621 cites W2124003523 @default.
- W2019051621 cites W2127874106 @default.
- W2019051621 cites W2128738778 @default.
- W2019051621 cites W2132799311 @default.
- W2019051621 cites W2134403593 @default.
- W2019051621 cites W2134599124 @default.
- W2019051621 cites W2135206487 @default.
- W2019051621 cites W2135222441 @default.
- W2019051621 cites W2136336930 @default.
- W2019051621 cites W2146620998 @default.
- W2019051621 cites W2147710356 @default.
- W2019051621 cites W2149424505 @default.
- W2019051621 cites W2150603502 @default.
- W2019051621 cites W2155178967 @default.
- W2019051621 cites W2167030304 @default.
- W2019051621 cites W2169120848 @default.
- W2019051621 cites W2172121033 @default.
- W2019051621 cites W4211177544 @default.
- W2019051621 cites W4213136013 @default.
- W2019051621 cites W4250668450 @default.
- W2019051621 doi "https://doi.org/10.1111/mec.12722" @default.
- W2019051621 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24650161" @default.
- W2019051621 hasPublicationYear "2014" @default.
- W2019051621 type Work @default.
- W2019051621 sameAs 2019051621 @default.
- W2019051621 citedByCount "49" @default.
- W2019051621 countsByYear W20190516212014 @default.
- W2019051621 countsByYear W20190516212015 @default.
- W2019051621 countsByYear W20190516212016 @default.
- W2019051621 countsByYear W20190516212017 @default.
- W2019051621 countsByYear W20190516212018 @default.
- W2019051621 countsByYear W20190516212019 @default.
- W2019051621 countsByYear W20190516212020 @default.
- W2019051621 countsByYear W20190516212021 @default.
- W2019051621 countsByYear W20190516212022 @default.
- W2019051621 countsByYear W20190516212023 @default.
- W2019051621 crossrefType "journal-article" @default.
- W2019051621 hasAuthorship W2019051621A5027836945 @default.
- W2019051621 hasAuthorship W2019051621A5080002402 @default.
- W2019051621 hasConcept C105795698 @default.
- W2019051621 hasConcept C107673813 @default.
- W2019051621 hasConcept C144024400 @default.
- W2019051621 hasConcept C149782125 @default.
- W2019051621 hasConcept C149923435 @default.
- W2019051621 hasConcept C154945302 @default.
- W2019051621 hasConcept C160234255 @default.
- W2019051621 hasConcept C2776214188 @default.
- W2019051621 hasConcept C2776502983 @default.
- W2019051621 hasConcept C2779377595 @default.
- W2019051621 hasConcept C2908647359 @default.
- W2019051621 hasConcept C33923547 @default.
- W2019051621 hasConcept C41008148 @default.
- W2019051621 hasConcept C57830394 @default.
- W2019051621 hasConcept C86803240 @default.
- W2019051621 hasConcept C93959086 @default.
- W2019051621 hasConceptScore W2019051621C105795698 @default.
- W2019051621 hasConceptScore W2019051621C107673813 @default.
- W2019051621 hasConceptScore W2019051621C144024400 @default.
- W2019051621 hasConceptScore W2019051621C149782125 @default.
- W2019051621 hasConceptScore W2019051621C149923435 @default.
- W2019051621 hasConceptScore W2019051621C154945302 @default.
- W2019051621 hasConceptScore W2019051621C160234255 @default.
- W2019051621 hasConceptScore W2019051621C2776214188 @default.
- W2019051621 hasConceptScore W2019051621C2776502983 @default.
- W2019051621 hasConceptScore W2019051621C2779377595 @default.
- W2019051621 hasConceptScore W2019051621C2908647359 @default.
- W2019051621 hasConceptScore W2019051621C33923547 @default.
- W2019051621 hasConceptScore W2019051621C41008148 @default.
- W2019051621 hasConceptScore W2019051621C57830394 @default.
- W2019051621 hasConceptScore W2019051621C86803240 @default.