Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019064710> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2019064710 endingPage "154" @default.
- W2019064710 startingPage "147" @default.
- W2019064710 abstract "Abstract An artificial neural network (ANN) integrated computerized inspection system (CIS) was developed to determine tomato paste color in CIE L ∗ , a ∗ , and b ∗ color format and the number and size of dark specks which exist in the product. The usability of CIS in the determination of the number and the size of dark specks in tomato paste were investigated by comparing the results of CIS and human inspectors. While the inspectors had difficulties not only in determination of the specks having a diameter less than 0.2 mm but also in correct diameter measurement for all specks, the CIS had good determination and measurement capability. In 99 tomato paste samples, the number of the specks having diameter more than 0.2 mm were found by human inspectors and CIS as 233 and 235, respectively. However, the manual inspection gave inaccurate results for the diameter measurement of the specks. In the color evaluation of the tomato paste, strong correlations ( R ) were found between the results estimated from ANN-integrated CIS and those obtained from colorimeter (0.889, 0.958, 0.907 and 0.987 for L ∗ , a ∗ , b ∗ and a ∗ /b ∗ , respectively). The whole system is adapted to a graphical user interface (GUI) for use by a non-skilled person working in the tomato paste sector. While manual methods need approximately 5 min, GUI needs 20–25 s to determine, count and classify the dark specks and to measure the product color." @default.
- W2019064710 created "2016-06-24" @default.
- W2019064710 creator A5051671972 @default.
- W2019064710 creator A5086470528 @default.
- W2019064710 creator A5090123384 @default.
- W2019064710 date "2011-07-01" @default.
- W2019064710 modified "2023-10-16" @default.
- W2019064710 title "Determination of visual quality of tomato paste using computerized inspection system and artificial neural networks" @default.
- W2019064710 cites W1965298976 @default.
- W2019064710 cites W1981626846 @default.
- W2019064710 cites W1982307000 @default.
- W2019064710 cites W1995210144 @default.
- W2019064710 cites W2010621911 @default.
- W2019064710 cites W2011930321 @default.
- W2019064710 cites W2012905712 @default.
- W2019064710 cites W2022537594 @default.
- W2019064710 cites W2024863000 @default.
- W2019064710 cites W2053192519 @default.
- W2019064710 cites W2059665632 @default.
- W2019064710 cites W2059826025 @default.
- W2019064710 cites W2064087909 @default.
- W2019064710 cites W2070395820 @default.
- W2019064710 cites W2070512220 @default.
- W2019064710 cites W2079516178 @default.
- W2019064710 cites W2080483592 @default.
- W2019064710 cites W2087646072 @default.
- W2019064710 cites W2091107797 @default.
- W2019064710 cites W2128847511 @default.
- W2019064710 doi "https://doi.org/10.1016/j.compag.2011.04.007" @default.
- W2019064710 hasPublicationYear "2011" @default.
- W2019064710 type Work @default.
- W2019064710 sameAs 2019064710 @default.
- W2019064710 citedByCount "10" @default.
- W2019064710 countsByYear W20190647102012 @default.
- W2019064710 countsByYear W20190647102015 @default.
- W2019064710 countsByYear W20190647102016 @default.
- W2019064710 countsByYear W20190647102018 @default.
- W2019064710 countsByYear W20190647102019 @default.
- W2019064710 countsByYear W20190647102020 @default.
- W2019064710 countsByYear W20190647102021 @default.
- W2019064710 crossrefType "journal-article" @default.
- W2019064710 hasAuthorship W2019064710A5051671972 @default.
- W2019064710 hasAuthorship W2019064710A5086470528 @default.
- W2019064710 hasAuthorship W2019064710A5090123384 @default.
- W2019064710 hasConcept C111472728 @default.
- W2019064710 hasConcept C127413603 @default.
- W2019064710 hasConcept C138885662 @default.
- W2019064710 hasConcept C153180895 @default.
- W2019064710 hasConcept C154945302 @default.
- W2019064710 hasConcept C168820333 @default.
- W2019064710 hasConcept C2779530757 @default.
- W2019064710 hasConcept C2982818900 @default.
- W2019064710 hasConcept C31972630 @default.
- W2019064710 hasConcept C41008148 @default.
- W2019064710 hasConcept C50644808 @default.
- W2019064710 hasConceptScore W2019064710C111472728 @default.
- W2019064710 hasConceptScore W2019064710C127413603 @default.
- W2019064710 hasConceptScore W2019064710C138885662 @default.
- W2019064710 hasConceptScore W2019064710C153180895 @default.
- W2019064710 hasConceptScore W2019064710C154945302 @default.
- W2019064710 hasConceptScore W2019064710C168820333 @default.
- W2019064710 hasConceptScore W2019064710C2779530757 @default.
- W2019064710 hasConceptScore W2019064710C2982818900 @default.
- W2019064710 hasConceptScore W2019064710C31972630 @default.
- W2019064710 hasConceptScore W2019064710C41008148 @default.
- W2019064710 hasConceptScore W2019064710C50644808 @default.
- W2019064710 hasIssue "2" @default.
- W2019064710 hasLocation W20190647101 @default.
- W2019064710 hasOpenAccess W2019064710 @default.
- W2019064710 hasPrimaryLocation W20190647101 @default.
- W2019064710 hasRelatedWork W1588698027 @default.
- W2019064710 hasRelatedWork W2101822978 @default.
- W2019064710 hasRelatedWork W2115397382 @default.
- W2019064710 hasRelatedWork W2205466599 @default.
- W2019064710 hasRelatedWork W2393116105 @default.
- W2019064710 hasRelatedWork W2394038673 @default.
- W2019064710 hasRelatedWork W2968004781 @default.
- W2019064710 hasRelatedWork W4312959403 @default.
- W2019064710 hasRelatedWork W4316669358 @default.
- W2019064710 hasRelatedWork W99616944 @default.
- W2019064710 hasVolume "77" @default.
- W2019064710 isParatext "false" @default.
- W2019064710 isRetracted "false" @default.
- W2019064710 magId "2019064710" @default.
- W2019064710 workType "article" @default.