Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019081710> ?p ?o ?g. }
- W2019081710 endingPage "287" @default.
- W2019081710 startingPage "280" @default.
- W2019081710 abstract "Two of the major challenges of the European Union policy are to reduce both greenhouse gas (GHG) emissions and the dependence on fossil-based fuels. Biodiesel, produced through the transesterification of vegetable oils or animal fats, seems to be an excellent support nowadays, new raw materials to produce biodiesel are under study, provided that the production of biodiesel from edible oils is controversial for some social organizations. Olive pomace oil derives from the oil left in the olive fruit pulp (once olive oil has been extracted) and may be an option to considerer since it exhibits high neutral flavor that makes it undesirable for consumption, unless it is treated and further blended with virgin olive oil. Therefore, other uses for this oil could be soap production or its recycling to produce biodiesel. In this paper, noise emissions of a direct injection diesel engine Perkins fueled with olive pomace oil methyl ester (OPME) at several steady-state engine operating conditions were studied. This study proposes the use of different approaches for sound prediction of a diesel engine, based on artificial neural network (such as Evolutionary Product Unit Neural Networks (PUNNs) and Radial Basic Function Neural Networks (RBFNNs)) and response surface models. Their accuracies are compared in terms of Mean Square Error (MSE) and Standard Error of Prediction (SEP). It can be concluded that the use of PUNN improves the accuracy achieving acceptable values for both MSE and SEP by means of a simpler model than the combined PU and RBF NN proposed model. Moreover, it was found that the variable power does not explain the noise value prediction, the noise emitted by the engine is inversely related to the 1/3rd octave band of the frequency value and diesel fuel noise plays the most important role and influence in the PUNN model. Response surface models are rejected, due to their unacceptable accuracy in terms of noise prediction." @default.
- W2019081710 created "2016-06-24" @default.
- W2019081710 creator A5028629252 @default.
- W2019081710 creator A5036157857 @default.
- W2019081710 creator A5049164363 @default.
- W2019081710 creator A5063964437 @default.
- W2019081710 creator A5075091603 @default.
- W2019081710 creator A5086980043 @default.
- W2019081710 date "2012-08-01" @default.
- W2019081710 modified "2023-10-18" @default.
- W2019081710 title "Noise prediction of a diesel engine fueled with olive pomace oil methyl ester blended with diesel fuel" @default.
- W2019081710 cites W1495599234 @default.
- W2019081710 cites W1569478316 @default.
- W2019081710 cites W1587704980 @default.
- W2019081710 cites W1980290744 @default.
- W2019081710 cites W1984741926 @default.
- W2019081710 cites W1989914957 @default.
- W2019081710 cites W1990652627 @default.
- W2019081710 cites W1991480853 @default.
- W2019081710 cites W2008137537 @default.
- W2019081710 cites W2010167596 @default.
- W2019081710 cites W2018444051 @default.
- W2019081710 cites W2025097672 @default.
- W2019081710 cites W2025901511 @default.
- W2019081710 cites W2030902584 @default.
- W2019081710 cites W2045739030 @default.
- W2019081710 cites W2048984787 @default.
- W2019081710 cites W2051136641 @default.
- W2019081710 cites W2064319190 @default.
- W2019081710 cites W2065515547 @default.
- W2019081710 cites W2066277262 @default.
- W2019081710 cites W2085232632 @default.
- W2019081710 cites W2090901734 @default.
- W2019081710 cites W2093188074 @default.
- W2019081710 cites W2094543930 @default.
- W2019081710 cites W2130319529 @default.
- W2019081710 cites W2149723649 @default.
- W2019081710 cites W2156618971 @default.
- W2019081710 doi "https://doi.org/10.1016/j.fuel.2012.03.050" @default.
- W2019081710 hasPublicationYear "2012" @default.
- W2019081710 type Work @default.
- W2019081710 sameAs 2019081710 @default.
- W2019081710 citedByCount "11" @default.
- W2019081710 countsByYear W20190817102013 @default.
- W2019081710 countsByYear W20190817102015 @default.
- W2019081710 countsByYear W20190817102016 @default.
- W2019081710 countsByYear W20190817102018 @default.
- W2019081710 countsByYear W20190817102019 @default.
- W2019081710 countsByYear W20190817102020 @default.
- W2019081710 countsByYear W20190817102021 @default.
- W2019081710 crossrefType "journal-article" @default.
- W2019081710 hasAuthorship W2019081710A5028629252 @default.
- W2019081710 hasAuthorship W2019081710A5036157857 @default.
- W2019081710 hasAuthorship W2019081710A5049164363 @default.
- W2019081710 hasAuthorship W2019081710A5063964437 @default.
- W2019081710 hasAuthorship W2019081710A5075091603 @default.
- W2019081710 hasAuthorship W2019081710A5086980043 @default.
- W2019081710 hasConcept C119857082 @default.
- W2019081710 hasConcept C127413603 @default.
- W2019081710 hasConcept C138171918 @default.
- W2019081710 hasConcept C161790260 @default.
- W2019081710 hasConcept C171146098 @default.
- W2019081710 hasConcept C178790620 @default.
- W2019081710 hasConcept C185592680 @default.
- W2019081710 hasConcept C206139338 @default.
- W2019081710 hasConcept C2777241282 @default.
- W2019081710 hasConcept C2779096019 @default.
- W2019081710 hasConcept C2779607525 @default.
- W2019081710 hasConcept C2780804531 @default.
- W2019081710 hasConcept C2988377048 @default.
- W2019081710 hasConcept C31903555 @default.
- W2019081710 hasConcept C35421065 @default.
- W2019081710 hasConcept C39432304 @default.
- W2019081710 hasConcept C41008148 @default.
- W2019081710 hasConcept C50644808 @default.
- W2019081710 hasConcept C528095902 @default.
- W2019081710 hasConcept C52896960 @default.
- W2019081710 hasConcept C53991642 @default.
- W2019081710 hasConcept C548081761 @default.
- W2019081710 hasConcept C66910140 @default.
- W2019081710 hasConceptScore W2019081710C119857082 @default.
- W2019081710 hasConceptScore W2019081710C127413603 @default.
- W2019081710 hasConceptScore W2019081710C138171918 @default.
- W2019081710 hasConceptScore W2019081710C161790260 @default.
- W2019081710 hasConceptScore W2019081710C171146098 @default.
- W2019081710 hasConceptScore W2019081710C178790620 @default.
- W2019081710 hasConceptScore W2019081710C185592680 @default.
- W2019081710 hasConceptScore W2019081710C206139338 @default.
- W2019081710 hasConceptScore W2019081710C2777241282 @default.
- W2019081710 hasConceptScore W2019081710C2779096019 @default.
- W2019081710 hasConceptScore W2019081710C2779607525 @default.
- W2019081710 hasConceptScore W2019081710C2780804531 @default.
- W2019081710 hasConceptScore W2019081710C2988377048 @default.
- W2019081710 hasConceptScore W2019081710C31903555 @default.
- W2019081710 hasConceptScore W2019081710C35421065 @default.
- W2019081710 hasConceptScore W2019081710C39432304 @default.
- W2019081710 hasConceptScore W2019081710C41008148 @default.
- W2019081710 hasConceptScore W2019081710C50644808 @default.