Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019093359> ?p ?o ?g. }
- W2019093359 endingPage "15" @default.
- W2019093359 startingPage "6" @default.
- W2019093359 abstract "Latent fingerprint identification plays an important role for identifying and convicting criminals in law enforcement agencies. Latent fingerprint images are usually of poor quality with unclear ridge structure and various overlapping patterns. Although significant advances have been achieved on developing automated fingerprint identification system, it is still challenging to achieve reliable feature extraction and identification for latent fingerprints due to the poor image quality. Prior to feature extraction, fingerprint enhancement is necessary to suppress various noises, and improve the clarity of ridge structures in latent fingerprints. Motivated by the recent success of sparse representation in image denoising, this paper proposes a latent fingerprint enhancement algorithm by combining the total variation model and multiscale patch-based sparse representation. First, the total variation model is applied to decompose the latent fingerprint into cartoon and texture components. The cartoon component with most of the nonfingerprint patterns is removed as the structured noise, whereas the texture component consisting of the weak latent fingerprint is enhanced in the next stage. Second, we propose a multiscale patch-based sparse representation method for the enhancement of the texture component. Dictionaries are constructed with a set of Gabor elementary functions to capture the characteristics of fingerprint ridge structure, and multiscale patch-based sparse representation is iteratively applied to reconstruct high-quality fingerprint image. The proposed algorithm cannot only remove the overlapping structured noises, but also restore and enhance the corrupted ridge structures. In addition, we present an automatic method to segment the foreground of latent image with the sparse coefficients and orientation coherence. Experimental results and comparisons on NIST SD27 latent fingerprint database are presented to show the effectiveness of the proposed algorithm and its superiority over existing algorithms." @default.
- W2019093359 created "2016-06-24" @default.
- W2019093359 creator A5012124989 @default.
- W2019093359 creator A5062097440 @default.
- W2019093359 creator A5079985761 @default.
- W2019093359 date "2015-01-01" @default.
- W2019093359 modified "2023-10-10" @default.
- W2019093359 title "Latent Fingerprint Enhancement via Multi-Scale Patch Based Sparse Representation" @default.
- W2019093359 cites W1964320810 @default.
- W2019093359 cites W1974588518 @default.
- W2019093359 cites W1980819045 @default.
- W2019093359 cites W1986931325 @default.
- W2019093359 cites W2001874436 @default.
- W2019093359 cites W2005089986 @default.
- W2019093359 cites W2017688462 @default.
- W2019093359 cites W2021181521 @default.
- W2019093359 cites W2096127742 @default.
- W2019093359 cites W2127717018 @default.
- W2019093359 cites W2128603616 @default.
- W2019093359 cites W2129638195 @default.
- W2019093359 cites W2133719507 @default.
- W2019093359 cites W2137441863 @default.
- W2019093359 cites W2139083609 @default.
- W2019093359 cites W2140602039 @default.
- W2019093359 cites W2141446409 @default.
- W2019093359 cites W2142685553 @default.
- W2019093359 cites W2145933558 @default.
- W2019093359 cites W2150945320 @default.
- W2019093359 cites W2153663612 @default.
- W2019093359 cites W2157085130 @default.
- W2019093359 cites W2163398148 @default.
- W2019093359 cites W2260991087 @default.
- W2019093359 cites W2295683379 @default.
- W2019093359 cites W4242257874 @default.
- W2019093359 doi "https://doi.org/10.1109/tifs.2014.2360582" @default.
- W2019093359 hasPublicationYear "2015" @default.
- W2019093359 type Work @default.
- W2019093359 sameAs 2019093359 @default.
- W2019093359 citedByCount "36" @default.
- W2019093359 countsByYear W20190933592015 @default.
- W2019093359 countsByYear W20190933592016 @default.
- W2019093359 countsByYear W20190933592017 @default.
- W2019093359 countsByYear W20190933592018 @default.
- W2019093359 countsByYear W20190933592019 @default.
- W2019093359 countsByYear W20190933592020 @default.
- W2019093359 countsByYear W20190933592021 @default.
- W2019093359 countsByYear W20190933592022 @default.
- W2019093359 countsByYear W20190933592023 @default.
- W2019093359 crossrefType "journal-article" @default.
- W2019093359 hasAuthorship W2019093359A5012124989 @default.
- W2019093359 hasAuthorship W2019093359A5062097440 @default.
- W2019093359 hasAuthorship W2019093359A5079985761 @default.
- W2019093359 hasConcept C124066611 @default.
- W2019093359 hasConcept C138885662 @default.
- W2019093359 hasConcept C153180895 @default.
- W2019093359 hasConcept C154945302 @default.
- W2019093359 hasConcept C168406668 @default.
- W2019093359 hasConcept C17744445 @default.
- W2019093359 hasConcept C199539241 @default.
- W2019093359 hasConcept C2776359362 @default.
- W2019093359 hasConcept C2776401178 @default.
- W2019093359 hasConcept C2777826928 @default.
- W2019093359 hasConcept C31972630 @default.
- W2019093359 hasConcept C41008148 @default.
- W2019093359 hasConcept C41895202 @default.
- W2019093359 hasConcept C52622490 @default.
- W2019093359 hasConcept C94625758 @default.
- W2019093359 hasConceptScore W2019093359C124066611 @default.
- W2019093359 hasConceptScore W2019093359C138885662 @default.
- W2019093359 hasConceptScore W2019093359C153180895 @default.
- W2019093359 hasConceptScore W2019093359C154945302 @default.
- W2019093359 hasConceptScore W2019093359C168406668 @default.
- W2019093359 hasConceptScore W2019093359C17744445 @default.
- W2019093359 hasConceptScore W2019093359C199539241 @default.
- W2019093359 hasConceptScore W2019093359C2776359362 @default.
- W2019093359 hasConceptScore W2019093359C2776401178 @default.
- W2019093359 hasConceptScore W2019093359C2777826928 @default.
- W2019093359 hasConceptScore W2019093359C31972630 @default.
- W2019093359 hasConceptScore W2019093359C41008148 @default.
- W2019093359 hasConceptScore W2019093359C41895202 @default.
- W2019093359 hasConceptScore W2019093359C52622490 @default.
- W2019093359 hasConceptScore W2019093359C94625758 @default.
- W2019093359 hasFunder F4320321001 @default.
- W2019093359 hasIssue "1" @default.
- W2019093359 hasLocation W20190933591 @default.
- W2019093359 hasOpenAccess W2019093359 @default.
- W2019093359 hasPrimaryLocation W20190933591 @default.
- W2019093359 hasRelatedWork W1925241029 @default.
- W2019093359 hasRelatedWork W1948266990 @default.
- W2019093359 hasRelatedWork W2016461833 @default.
- W2019093359 hasRelatedWork W2031869223 @default.
- W2019093359 hasRelatedWork W2067275498 @default.
- W2019093359 hasRelatedWork W2534909612 @default.
- W2019093359 hasRelatedWork W2546942002 @default.
- W2019093359 hasRelatedWork W2734991885 @default.
- W2019093359 hasRelatedWork W2945952022 @default.
- W2019093359 hasRelatedWork W4303683349 @default.
- W2019093359 hasVolume "10" @default.