Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019100231> ?p ?o ?g. }
- W2019100231 endingPage "71" @default.
- W2019100231 startingPage "65" @default.
- W2019100231 abstract "Although metabolic networks have been reconstructed on a genome scale, the corresponding reconstruction and integration of governing transcriptional regulatory networks has not been fully achieved. Here we reconstruct such an integrated network for amino acid metabolism in Escherichia coli. Analysis of ChIP-chip and gene expression data for the transcription factors ArgR, Lrp and TrpR showed that 19 out of 20 amino acid biosynthetic pathways are either directly or indirectly controlled by these regulators. Classifying the regulated genes into three functional categories of transport, biosynthesis and metabolism leads to the elucidation of regulatory motifs that constitute the integrated network's basic building blocks. The regulatory logic of these motifs was determined on the basis of relationships between transcription factor binding and changes in the amount of transcript in response to exogenous amino acids. Remarkably, the resulting logic shows how amino acids are differentiated as signaling and nutrient molecules, revealing the overarching regulatory principles of the amino acid stimulon." @default.
- W2019100231 created "2016-06-24" @default.
- W2019100231 creator A5024979519 @default.
- W2019100231 creator A5051097609 @default.
- W2019100231 creator A5072461088 @default.
- W2019100231 creator A5079197003 @default.
- W2019100231 creator A5091067470 @default.
- W2019100231 date "2011-11-13" @default.
- W2019100231 modified "2023-09-27" @default.
- W2019100231 title "Deciphering the transcriptional regulatory logic of amino acid metabolism" @default.
- W2019100231 cites W1508069518 @default.
- W2019100231 cites W1569006374 @default.
- W2019100231 cites W1598926298 @default.
- W2019100231 cites W1876521440 @default.
- W2019100231 cites W1964508389 @default.
- W2019100231 cites W1966786968 @default.
- W2019100231 cites W1966850120 @default.
- W2019100231 cites W1971922923 @default.
- W2019100231 cites W1973614663 @default.
- W2019100231 cites W1982309495 @default.
- W2019100231 cites W1982658095 @default.
- W2019100231 cites W2004235182 @default.
- W2019100231 cites W2005923596 @default.
- W2019100231 cites W2033160598 @default.
- W2019100231 cites W2044525257 @default.
- W2019100231 cites W2054331129 @default.
- W2019100231 cites W2057067757 @default.
- W2019100231 cites W2061425021 @default.
- W2019100231 cites W2063571454 @default.
- W2019100231 cites W2078838027 @default.
- W2019100231 cites W2091640164 @default.
- W2019100231 cites W2094397891 @default.
- W2019100231 cites W2111151050 @default.
- W2019100231 cites W2113651242 @default.
- W2019100231 cites W2117891907 @default.
- W2019100231 cites W2118572979 @default.
- W2019100231 cites W2126156443 @default.
- W2019100231 cites W2129180735 @default.
- W2019100231 cites W2145091349 @default.
- W2019100231 cites W2152045787 @default.
- W2019100231 cites W2157009395 @default.
- W2019100231 cites W2158057347 @default.
- W2019100231 cites W2188551335 @default.
- W2019100231 cites W2249384222 @default.
- W2019100231 cites W4230004685 @default.
- W2019100231 cites W4327847579 @default.
- W2019100231 cites W97387340 @default.
- W2019100231 doi "https://doi.org/10.1038/nchembio.710" @default.
- W2019100231 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3777760" @default.
- W2019100231 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22082910" @default.
- W2019100231 hasPublicationYear "2011" @default.
- W2019100231 type Work @default.
- W2019100231 sameAs 2019100231 @default.
- W2019100231 citedByCount "78" @default.
- W2019100231 countsByYear W20191002312012 @default.
- W2019100231 countsByYear W20191002312013 @default.
- W2019100231 countsByYear W20191002312014 @default.
- W2019100231 countsByYear W20191002312015 @default.
- W2019100231 countsByYear W20191002312016 @default.
- W2019100231 countsByYear W20191002312017 @default.
- W2019100231 countsByYear W20191002312018 @default.
- W2019100231 countsByYear W20191002312019 @default.
- W2019100231 countsByYear W20191002312020 @default.
- W2019100231 countsByYear W20191002312021 @default.
- W2019100231 countsByYear W20191002312022 @default.
- W2019100231 countsByYear W20191002312023 @default.
- W2019100231 crossrefType "journal-article" @default.
- W2019100231 hasAuthorship W2019100231A5024979519 @default.
- W2019100231 hasAuthorship W2019100231A5051097609 @default.
- W2019100231 hasAuthorship W2019100231A5072461088 @default.
- W2019100231 hasAuthorship W2019100231A5079197003 @default.
- W2019100231 hasAuthorship W2019100231A5091067470 @default.
- W2019100231 hasBestOaLocation W20191002312 @default.
- W2019100231 hasConcept C104317684 @default.
- W2019100231 hasConcept C111936080 @default.
- W2019100231 hasConcept C150194340 @default.
- W2019100231 hasConcept C165864922 @default.
- W2019100231 hasConcept C190796033 @default.
- W2019100231 hasConcept C27153228 @default.
- W2019100231 hasConcept C515207424 @default.
- W2019100231 hasConcept C55493867 @default.
- W2019100231 hasConcept C67339327 @default.
- W2019100231 hasConcept C70721500 @default.
- W2019100231 hasConcept C86339819 @default.
- W2019100231 hasConcept C86803240 @default.
- W2019100231 hasConceptScore W2019100231C104317684 @default.
- W2019100231 hasConceptScore W2019100231C111936080 @default.
- W2019100231 hasConceptScore W2019100231C150194340 @default.
- W2019100231 hasConceptScore W2019100231C165864922 @default.
- W2019100231 hasConceptScore W2019100231C190796033 @default.
- W2019100231 hasConceptScore W2019100231C27153228 @default.
- W2019100231 hasConceptScore W2019100231C515207424 @default.
- W2019100231 hasConceptScore W2019100231C55493867 @default.
- W2019100231 hasConceptScore W2019100231C67339327 @default.
- W2019100231 hasConceptScore W2019100231C70721500 @default.
- W2019100231 hasConceptScore W2019100231C86339819 @default.
- W2019100231 hasConceptScore W2019100231C86803240 @default.
- W2019100231 hasIssue "1" @default.