Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019102543> ?p ?o ?g. }
- W2019102543 endingPage "165" @default.
- W2019102543 startingPage "154" @default.
- W2019102543 abstract "Recent trends suggest that future biotechnology will increasingly rely on mathematical models of the biological systems under investigation. In particular, metabolic engineering will make wider use of metabolic pathway models in stoichiometric or fully kinetic format. A significant obstacle to the use of pathway models is the identification of suitable process descriptions and their parameters. We recently showed that, at least under favorable conditions, Dynamic Flux Estimation (DFE) permits the numerical characterization of fluxes from sets of metabolic time series data. However, DFE does not prescribe how to convert these numerical results into functional representations. In some cases, Michaelis–Menten rate laws or canonical formats are well suited, in which case the estimation of parameter values is easy. However, in other cases, appropriate functional forms are not evident, and exhaustive searches among all possible candidate models are not feasible. We show here how piecewise power-law functions of one or more variables offer an effective default solution for the almost unbiased representation of uni- and multivariate time series data. The results of an automated algorithm for their determination are piecewise power-law fits, whose accuracy is only limited by the available data. The individual power-law pieces may lead to discontinuities at break points or boundaries between sub-domains. In many practical applications, these boundary gaps do not cause problems. Potential smoothing techniques, based on differential inclusions and Filippov's theory, are discussed in Appendix A." @default.
- W2019102543 created "2016-06-24" @default.
- W2019102543 creator A5009306401 @default.
- W2019102543 creator A5063233199 @default.
- W2019102543 creator A5082844298 @default.
- W2019102543 date "2010-09-01" @default.
- W2019102543 modified "2023-09-23" @default.
- W2019102543 title "Automated piecewise power-law modeling of biological systems" @default.
- W2019102543 cites W1019013893 @default.
- W2019102543 cites W1482637285 @default.
- W2019102543 cites W1501815954 @default.
- W2019102543 cites W1502529406 @default.
- W2019102543 cites W1508445421 @default.
- W2019102543 cites W1510585142 @default.
- W2019102543 cites W1511213320 @default.
- W2019102543 cites W1534421636 @default.
- W2019102543 cites W1535241806 @default.
- W2019102543 cites W1538908010 @default.
- W2019102543 cites W1581582023 @default.
- W2019102543 cites W1591966886 @default.
- W2019102543 cites W1592648094 @default.
- W2019102543 cites W1912803728 @default.
- W2019102543 cites W1982929760 @default.
- W2019102543 cites W2000040887 @default.
- W2019102543 cites W2007093507 @default.
- W2019102543 cites W2028118090 @default.
- W2019102543 cites W2034062644 @default.
- W2019102543 cites W2034064145 @default.
- W2019102543 cites W2035518322 @default.
- W2019102543 cites W2051866702 @default.
- W2019102543 cites W2054403025 @default.
- W2019102543 cites W2054954256 @default.
- W2019102543 cites W2063346607 @default.
- W2019102543 cites W2063565911 @default.
- W2019102543 cites W2082612102 @default.
- W2019102543 cites W2088343152 @default.
- W2019102543 cites W2103121549 @default.
- W2019102543 cites W2104004040 @default.
- W2019102543 cites W2110517028 @default.
- W2019102543 cites W2123658120 @default.
- W2019102543 cites W2161304688 @default.
- W2019102543 cites W2163641552 @default.
- W2019102543 cites W2168648059 @default.
- W2019102543 cites W2170484057 @default.
- W2019102543 cites W2540877599 @default.
- W2019102543 cites W32444745 @default.
- W2019102543 cites W594714210 @default.
- W2019102543 cites W94200036 @default.
- W2019102543 doi "https://doi.org/10.1016/j.jbiotec.2009.12.016" @default.
- W2019102543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20060428" @default.
- W2019102543 hasPublicationYear "2010" @default.
- W2019102543 type Work @default.
- W2019102543 sameAs 2019102543 @default.
- W2019102543 citedByCount "15" @default.
- W2019102543 countsByYear W20191025432012 @default.
- W2019102543 countsByYear W20191025432013 @default.
- W2019102543 countsByYear W20191025432016 @default.
- W2019102543 countsByYear W20191025432017 @default.
- W2019102543 countsByYear W20191025432020 @default.
- W2019102543 countsByYear W20191025432021 @default.
- W2019102543 crossrefType "journal-article" @default.
- W2019102543 hasAuthorship W2019102543A5009306401 @default.
- W2019102543 hasAuthorship W2019102543A5063233199 @default.
- W2019102543 hasAuthorship W2019102543A5082844298 @default.
- W2019102543 hasConcept C105795698 @default.
- W2019102543 hasConcept C11413529 @default.
- W2019102543 hasConcept C126255220 @default.
- W2019102543 hasConcept C134306372 @default.
- W2019102543 hasConcept C15627037 @default.
- W2019102543 hasConcept C164660894 @default.
- W2019102543 hasConcept C17744445 @default.
- W2019102543 hasConcept C199539241 @default.
- W2019102543 hasConcept C2776359362 @default.
- W2019102543 hasConcept C28826006 @default.
- W2019102543 hasConcept C31972630 @default.
- W2019102543 hasConcept C33923547 @default.
- W2019102543 hasConcept C3770464 @default.
- W2019102543 hasConcept C41008148 @default.
- W2019102543 hasConcept C87040749 @default.
- W2019102543 hasConcept C94625758 @default.
- W2019102543 hasConceptScore W2019102543C105795698 @default.
- W2019102543 hasConceptScore W2019102543C11413529 @default.
- W2019102543 hasConceptScore W2019102543C126255220 @default.
- W2019102543 hasConceptScore W2019102543C134306372 @default.
- W2019102543 hasConceptScore W2019102543C15627037 @default.
- W2019102543 hasConceptScore W2019102543C164660894 @default.
- W2019102543 hasConceptScore W2019102543C17744445 @default.
- W2019102543 hasConceptScore W2019102543C199539241 @default.
- W2019102543 hasConceptScore W2019102543C2776359362 @default.
- W2019102543 hasConceptScore W2019102543C28826006 @default.
- W2019102543 hasConceptScore W2019102543C31972630 @default.
- W2019102543 hasConceptScore W2019102543C33923547 @default.
- W2019102543 hasConceptScore W2019102543C3770464 @default.
- W2019102543 hasConceptScore W2019102543C41008148 @default.
- W2019102543 hasConceptScore W2019102543C87040749 @default.
- W2019102543 hasConceptScore W2019102543C94625758 @default.
- W2019102543 hasIssue "3" @default.
- W2019102543 hasLocation W20191025431 @default.