Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019105560> ?p ?o ?g. }
- W2019105560 endingPage "2173" @default.
- W2019105560 startingPage "2161" @default.
- W2019105560 abstract "Forest nitrogen (N) retention and soil carbon (C) storage are influenced by tree species and their associated soil microbial communities. As global change factors alter forest composition, predicting long-term C and N dynamics will require understanding microbial community structure and function at the tree species level. Because atmospheric N deposition is increasing N inputs to forested ecosystems across the globe, including the northeastern US, it is also important to understand how microbial communities respond to added N. While prior studies have examined these topics in mixed-species stands, we focused on the responses of different tree species and their associated microbial communities within a single forest type – a northern hardwood forest in the Catskills Mountains, NY. Based on prior studies, we hypothesized that N additions would stimulate extracellular enzyme activities in relatively labile litters, but suppress oxidative enzyme activities in recalcitrant litters, and tested for independent tree species effects within this context. During the 2007 growing season (May–June), we measured enzyme activities and microbial community composition (using phospholipid fatty acid analysis - PLFA) of the forest floor in single-species plots dominated by sugar maple ( Acer saccharum ), yellow birch ( Betula alleghaniensis ), red oak ( Quercus rubra ), American beech ( Fagus grandifolia ) and eastern hemlock ( Tsuga canadensis ), species whose litters range from relatively labile to recalcitrant. Half the plots were fertilized with N by adding NH 4 NO 3 (50 kg ha −1 y −1 ) from 1997 to 2009. Non-metric multidimensional scaling (NMS) and multi-response permutation procedures (MRPP) were used to examine microbial community structure and relationship to enzyme activities. We found that in response to N additions, both microbial community composition and enzyme activities changed; however the strength of the changes were tree species-specific and the direction of these changes was and not readily predictable from prior studies conducted in mixed-species stands. For example, in contrast to other studies, we found that N additions caused a significant overall increase in fungal biomass that was strongest for yellow birch (24% increase) and weakest for sugar maple (1% increase). Contrary to our initial hypotheses and current conceptual models, N additions reduced hydrolytic enzyme activities in hemlock plots and reduced oxidative enzyme activity in birch plots, a species with relatively labile litter. These responses suggest that our understanding of the interactions between microbial community composition, enzyme activity, substrate chemistry, and nutrient availability as influenced by tree species composition is incomplete. NMS ordination showed that patterns in microbial community structure (PLFA) and function (enzyme activity) were more strongly influenced by tree species than by fertilization, and only partially agreed with the structure–function relationships found in other studies. This finding suggests that tree species-specific responses are likely to be important in determining the structure and function of northeastern hardwood forests in the future. Enhanced understanding of microbial responses to added N in single and mixed-species substrates with varying amounts of lignin and phenols may be needed for accurate predictions of future soil C and N dynamics." @default.
- W2019105560 created "2016-06-24" @default.
- W2019105560 creator A5015295267 @default.
- W2019105560 creator A5028379346 @default.
- W2019105560 creator A5034696039 @default.
- W2019105560 creator A5037939497 @default.
- W2019105560 creator A5078219567 @default.
- W2019105560 date "2010-12-01" @default.
- W2019105560 modified "2023-09-25" @default.
- W2019105560 title "Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities" @default.
- W2019105560 cites W1519638452 @default.
- W2019105560 cites W157217960 @default.
- W2019105560 cites W1930323511 @default.
- W2019105560 cites W1972035091 @default.
- W2019105560 cites W1973192023 @default.
- W2019105560 cites W1976955014 @default.
- W2019105560 cites W1981977817 @default.
- W2019105560 cites W1991621279 @default.
- W2019105560 cites W1993152985 @default.
- W2019105560 cites W1996738342 @default.
- W2019105560 cites W1997294324 @default.
- W2019105560 cites W1997497309 @default.
- W2019105560 cites W2020103051 @default.
- W2019105560 cites W2035928753 @default.
- W2019105560 cites W2039099594 @default.
- W2019105560 cites W2040841653 @default.
- W2019105560 cites W2054334678 @default.
- W2019105560 cites W2059075856 @default.
- W2019105560 cites W2059186071 @default.
- W2019105560 cites W2062983026 @default.
- W2019105560 cites W2067388266 @default.
- W2019105560 cites W2072448168 @default.
- W2019105560 cites W2074898370 @default.
- W2019105560 cites W2078067297 @default.
- W2019105560 cites W2079129273 @default.
- W2019105560 cites W2080836316 @default.
- W2019105560 cites W2087804129 @default.
- W2019105560 cites W2090271344 @default.
- W2019105560 cites W2096371469 @default.
- W2019105560 cites W2105849002 @default.
- W2019105560 cites W2105967768 @default.
- W2019105560 cites W2109591828 @default.
- W2019105560 cites W2110046114 @default.
- W2019105560 cites W2114519071 @default.
- W2019105560 cites W2114856640 @default.
- W2019105560 cites W2117160001 @default.
- W2019105560 cites W2121984984 @default.
- W2019105560 cites W2122215641 @default.
- W2019105560 cites W2122419936 @default.
- W2019105560 cites W2128417701 @default.
- W2019105560 cites W2128499217 @default.
- W2019105560 cites W2137861764 @default.
- W2019105560 cites W2145521287 @default.
- W2019105560 cites W2145553599 @default.
- W2019105560 cites W2152405429 @default.
- W2019105560 cites W2157110683 @default.
- W2019105560 cites W2157883338 @default.
- W2019105560 cites W2158183161 @default.
- W2019105560 cites W2170180767 @default.
- W2019105560 cites W2322413163 @default.
- W2019105560 doi "https://doi.org/10.1016/j.soilbio.2010.08.012" @default.
- W2019105560 hasPublicationYear "2010" @default.
- W2019105560 type Work @default.
- W2019105560 sameAs 2019105560 @default.
- W2019105560 citedByCount "163" @default.
- W2019105560 countsByYear W20191055602012 @default.
- W2019105560 countsByYear W20191055602013 @default.
- W2019105560 countsByYear W20191055602014 @default.
- W2019105560 countsByYear W20191055602015 @default.
- W2019105560 countsByYear W20191055602016 @default.
- W2019105560 countsByYear W20191055602017 @default.
- W2019105560 countsByYear W20191055602018 @default.
- W2019105560 countsByYear W20191055602019 @default.
- W2019105560 countsByYear W20191055602020 @default.
- W2019105560 countsByYear W20191055602021 @default.
- W2019105560 countsByYear W20191055602022 @default.
- W2019105560 countsByYear W20191055602023 @default.
- W2019105560 crossrefType "journal-article" @default.
- W2019105560 hasAuthorship W2019105560A5015295267 @default.
- W2019105560 hasAuthorship W2019105560A5028379346 @default.
- W2019105560 hasAuthorship W2019105560A5034696039 @default.
- W2019105560 hasAuthorship W2019105560A5037939497 @default.
- W2019105560 hasAuthorship W2019105560A5078219567 @default.
- W2019105560 hasConcept C110872660 @default.
- W2019105560 hasConcept C130950616 @default.
- W2019105560 hasConcept C151730666 @default.
- W2019105560 hasConcept C18903297 @default.
- W2019105560 hasConcept C2776500793 @default.
- W2019105560 hasConcept C2776934432 @default.
- W2019105560 hasConcept C2779237806 @default.
- W2019105560 hasConcept C2779343474 @default.
- W2019105560 hasConcept C2780414537 @default.
- W2019105560 hasConcept C2909496354 @default.
- W2019105560 hasConcept C523546767 @default.
- W2019105560 hasConcept C53565203 @default.
- W2019105560 hasConcept C54355233 @default.
- W2019105560 hasConcept C59822182 @default.
- W2019105560 hasConcept C73935091 @default.