Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019118701> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2019118701 abstract "We are drowning in big data, but a lot of it is hard to interpret. For example, Google indexes about 40B webpages, but these are just represented as bags of words, which don't mean much to a computer. To get from strings to things, Google introduced the Knowledge Graph (KG), which is a database of facts about entities (people, places, movies, etc.) and their relations (nationality, geo-containment, actor roles, etc). KG is based on Freebase, but supplements it with various other structured data sources. Although KG is very large (about 500M nodes/ entities, and 30B edges/ relations), it is still very incomplete. For example, 94% of the people are missing their place of birth, and 78% have no known nationality - these are examples of missing links in the graph. In addition, we are missing many nodes (corresponding to new entities), as well as new types of nodes and edges (corresponding to extensions to the schema). In this talk, I will survey some of the efforts we are engaged in to try to grow KG automatically using machine learning methods. In particular, I will summarize our work on the problems of entity linkage, relation extraction, and link prediction, using data extracted from natural language text as well as tabular data found on the web." @default.
- W2019118701 created "2016-06-24" @default.
- W2019118701 creator A5002713363 @default.
- W2019118701 date "2013-01-01" @default.
- W2019118701 modified "2023-09-23" @default.
- W2019118701 title "From big data to big knowledge" @default.
- W2019118701 doi "https://doi.org/10.1145/2505515.2514697" @default.
- W2019118701 hasPublicationYear "2013" @default.
- W2019118701 type Work @default.
- W2019118701 sameAs 2019118701 @default.
- W2019118701 citedByCount "4" @default.
- W2019118701 countsByYear W20191187012014 @default.
- W2019118701 countsByYear W20191187012015 @default.
- W2019118701 countsByYear W20191187012019 @default.
- W2019118701 countsByYear W20191187012020 @default.
- W2019118701 crossrefType "proceedings-article" @default.
- W2019118701 hasAuthorship W2019118701A5002713363 @default.
- W2019118701 hasConcept C124101348 @default.
- W2019118701 hasConcept C132525143 @default.
- W2019118701 hasConcept C136764020 @default.
- W2019118701 hasConcept C153604712 @default.
- W2019118701 hasConcept C195807954 @default.
- W2019118701 hasConcept C21959979 @default.
- W2019118701 hasConcept C23123220 @default.
- W2019118701 hasConcept C25343380 @default.
- W2019118701 hasConcept C2987255567 @default.
- W2019118701 hasConcept C41008148 @default.
- W2019118701 hasConcept C4554734 @default.
- W2019118701 hasConcept C52146309 @default.
- W2019118701 hasConcept C75684735 @default.
- W2019118701 hasConcept C80444323 @default.
- W2019118701 hasConcept C96711827 @default.
- W2019118701 hasConceptScore W2019118701C124101348 @default.
- W2019118701 hasConceptScore W2019118701C132525143 @default.
- W2019118701 hasConceptScore W2019118701C136764020 @default.
- W2019118701 hasConceptScore W2019118701C153604712 @default.
- W2019118701 hasConceptScore W2019118701C195807954 @default.
- W2019118701 hasConceptScore W2019118701C21959979 @default.
- W2019118701 hasConceptScore W2019118701C23123220 @default.
- W2019118701 hasConceptScore W2019118701C25343380 @default.
- W2019118701 hasConceptScore W2019118701C2987255567 @default.
- W2019118701 hasConceptScore W2019118701C41008148 @default.
- W2019118701 hasConceptScore W2019118701C4554734 @default.
- W2019118701 hasConceptScore W2019118701C52146309 @default.
- W2019118701 hasConceptScore W2019118701C75684735 @default.
- W2019118701 hasConceptScore W2019118701C80444323 @default.
- W2019118701 hasConceptScore W2019118701C96711827 @default.
- W2019118701 hasLocation W20191187011 @default.
- W2019118701 hasOpenAccess W2019118701 @default.
- W2019118701 hasPrimaryLocation W20191187011 @default.
- W2019118701 hasRelatedWork W176833065 @default.
- W2019118701 hasRelatedWork W1950142954 @default.
- W2019118701 hasRelatedWork W2087943365 @default.
- W2019118701 hasRelatedWork W2358557280 @default.
- W2019118701 hasRelatedWork W2757888939 @default.
- W2019118701 hasRelatedWork W2806378826 @default.
- W2019118701 hasRelatedWork W3176328530 @default.
- W2019118701 hasRelatedWork W3179493474 @default.
- W2019118701 hasRelatedWork W3212129137 @default.
- W2019118701 hasRelatedWork W4226517521 @default.
- W2019118701 isParatext "false" @default.
- W2019118701 isRetracted "false" @default.
- W2019118701 magId "2019118701" @default.
- W2019118701 workType "article" @default.